Journal Article PUBDB-2025-01897

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Low-Energy Photoelectron Spectroscopy and Scattering from Aqueous Solutions and the Role of Solute Surface Activity

 ;  ;  ;  ;  ;

2025
ACS Publications Washington, DC

Journal of the American Chemical Society 147(23), 19868 - 19877 () [10.1021/jacs.5c04263]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Experimental insights into low-kinetic-energy electron scattering in aqueous solutions are essential for an improved understanding of electron-driven chemistry and radiobiology, and the development and informed application of aqueous-phase electron-based spectroscopy and dichroism methods. Generally, in aqueous environments and for electron kinetic energies below 12–15 eV, significant and, thus far, incompletely understood low-energy-transfer inelastic electron scattering with solvent molecules preponderates. This leads to cascades of tens-of-meV kinetic-energy losses that distort nascent photoelectron spectra, prevent direct and accurate electron-binding-energy measurements, and limit possibilities to determine electron-scattering cross sections at especially low electron kinetic energies. Here, we quantify aqueous-phase inelastic-scattering-based energy losses using 1–30 eV kinetic energy photoelectrons and liquid-jet photoemission spectroscopy, specifically by photoionizing an exemplary surface-active solute and comparing the results with those from the homogeneously distributed aqueous solvent. Thereby, we identify a general ≳17 eV electron-kinetic-energy requirement for the direct and accurate measurement of aqueous-phase electron binding energies, irrespective of interfacial concentration profiles. Further, at electron kinetic energies from 10 eV down to a few-eV above the ionization threshold, we observe and quantify lower degrees of scattering for photoelectrons generated from surface-active solutes, allowing moderately distorted surface-active-solute photoemission peaks to be resolved down to just few-eV electron kinetic energies. These results demonstrate that liquid-jet photoemission spectroscopy can be used to probe interfacial surface-active-solute dynamics and dichroism effects close to ionization thresholds, in stark contrast to similar experiments on homogeneously distributed solution components. Furthermore, they offer novel insights into low-electron-kinetic-energy scattering in aqueous environments, thereby addressing the current lack of reliable experimental data in this critical energy range.

Classification:

Note: Open Access

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: II-20210015 (II-20210015) (II-20210015)
  3. FS-Proposal: II-20230689 (II-20230689) (II-20230689)
  4. AQUACHIRAL - Chiral aqueous-phase chemistry (883759) (883759)
Experiment(s):
  1. PETRA Beamline P04 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; Index Chemicus ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-06-17, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)