001     630677
005     20250723105959.0
024 7 _ |a 10.1021/jacs.5c04263
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01897
|2 datacite_doi
024 7 _ |a altmetric:177715066
|2 altmetric
024 7 _ |a pmid:40454638
|2 pmid
024 7 _ |a openalex:W4410962673
|2 openalex
037 _ _ |a PUBDB-2025-01897
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Thuermer, Stephan
|0 P:(DE-H253)PIP1086906
|b 0
|e Corresponding author
245 _ _ |a Low-Energy Photoelectron Spectroscopy and Scattering from Aqueous Solutions and the Role of Solute Surface Activity
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751269820_3315264
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Open Access
520 _ _ |a Experimental insights into low-kinetic-energy electron scattering in aqueous solutions are essential for an improved understanding of electron-driven chemistry and radiobiology, and the development and informed application of aqueous-phase electron-based spectroscopy and dichroism methods. Generally, in aqueous environments and for electron kinetic energies below 12–15 eV, significant and, thus far, incompletely understood low-energy-transfer inelastic electron scattering with solvent molecules preponderates. This leads to cascades of tens-of-meV kinetic-energy losses that distort nascent photoelectron spectra, prevent direct and accurate electron-binding-energy measurements, and limit possibilities to determine electron-scattering cross sections at especially low electron kinetic energies. Here, we quantify aqueous-phase inelastic-scattering-based energy losses using 1–30 eV kinetic energy photoelectrons and liquid-jet photoemission spectroscopy, specifically by photoionizing an exemplary surface-active solute and comparing the results with those from the homogeneously distributed aqueous solvent. Thereby, we identify a general ≳17 eV electron-kinetic-energy requirement for the direct and accurate measurement of aqueous-phase electron binding energies, irrespective of interfacial concentration profiles. Further, at electron kinetic energies from 10 eV down to a few-eV above the ionization threshold, we observe and quantify lower degrees of scattering for photoelectrons generated from surface-active solutes, allowing moderately distorted surface-active-solute photoemission peaks to be resolved down to just few-eV electron kinetic energies. These results demonstrate that liquid-jet photoemission spectroscopy can be used to probe interfacial surface-active-solute dynamics and dichroism effects close to ionization thresholds, in stark contrast to similar experiments on homogeneously distributed solution components. Furthermore, they offer novel insights into low-electron-kinetic-energy scattering in aqueous environments, thereby addressing the current lack of reliable experimental data in this critical energy range.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: II-20210015 (II-20210015)
|0 G:(DE-H253)II-20210015
|c II-20210015
|x 1
536 _ _ |a FS-Proposal: II-20230689 (II-20230689)
|0 G:(DE-H253)II-20230689
|c II-20230689
|x 2
536 _ _ |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759)
|0 G:(EU-Grant)883759
|c 883759
|f ERC-2019-ADG
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Stemer, Dominik
|0 P:(DE-H253)PIP1096040
|b 1
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 2
700 1 _ |a Kiyan, Igor Yu
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Bernd
|0 P:(DE-H253)PIP1023483
|b 4
700 1 _ |a Wilkinson, Iain
|0 P:(DE-H253)PIP1086922
|b 5
|e Corresponding author
773 _ _ |a 10.1021/jacs.5c04263
|g Vol. 147, no. 23, p. 19868 - 19877
|0 PERI:(DE-600)1472210-0
|n 23
|p 19868 - 19877
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
856 4 _ |u https://pubs.acs.org/doi/full/10.1021/jacs.5c04263
856 4 _ |u https://bib-pubdb1.desy.de/record/630677/files/Thuermer_JACS_2025.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/630677/files/Thuermer_JACS_2025.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:630677
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1086906
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1096040
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1023483
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1086922
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21