000630677 001__ 630677
000630677 005__ 20250723105959.0
000630677 0247_ $$2doi$$a10.1021/jacs.5c04263
000630677 0247_ $$2ISSN$$a0002-7863
000630677 0247_ $$2ISSN$$a1520-5126
000630677 0247_ $$2ISSN$$a1943-2984
000630677 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01897
000630677 0247_ $$2altmetric$$aaltmetric:177715066
000630677 0247_ $$2pmid$$apmid:40454638
000630677 0247_ $$2openalex$$aopenalex:W4410962673
000630677 037__ $$aPUBDB-2025-01897
000630677 041__ $$aEnglish
000630677 082__ $$a540
000630677 1001_ $$0P:(DE-H253)PIP1086906$$aThuermer, Stephan$$b0$$eCorresponding author
000630677 245__ $$aLow-Energy Photoelectron Spectroscopy and Scattering from Aqueous Solutions and the Role of Solute Surface Activity
000630677 260__ $$aWashington, DC$$bACS Publications$$c2025
000630677 3367_ $$2DRIVER$$aarticle
000630677 3367_ $$2DataCite$$aOutput Types/Journal article
000630677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751269820_3315264
000630677 3367_ $$2BibTeX$$aARTICLE
000630677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000630677 3367_ $$00$$2EndNote$$aJournal Article
000630677 500__ $$aOpen Access
000630677 520__ $$aExperimental insights into low-kinetic-energy electron scattering in aqueous solutions are essential for an improved understanding of electron-driven chemistry and radiobiology, and the development and informed application of aqueous-phase electron-based spectroscopy and dichroism methods. Generally, in aqueous environments and for electron kinetic energies below 12–15 eV, significant and, thus far, incompletely understood low-energy-transfer inelastic electron scattering with solvent molecules preponderates. This leads to cascades of tens-of-meV kinetic-energy losses that distort nascent photoelectron spectra, prevent direct and accurate electron-binding-energy measurements, and limit possibilities to determine electron-scattering cross sections at especially low electron kinetic energies. Here, we quantify aqueous-phase inelastic-scattering-based energy losses using 1–30 eV kinetic energy photoelectrons and liquid-jet photoemission spectroscopy, specifically by photoionizing an exemplary surface-active solute and comparing the results with those from the homogeneously distributed aqueous solvent. Thereby, we identify a general ≳17 eV electron-kinetic-energy requirement for the direct and accurate measurement of aqueous-phase electron binding energies, irrespective of interfacial concentration profiles. Further, at electron kinetic energies from 10 eV down to a few-eV above the ionization threshold, we observe and quantify lower degrees of scattering for photoelectrons generated from surface-active solutes, allowing moderately distorted surface-active-solute photoemission peaks to be resolved down to just few-eV electron kinetic energies. These results demonstrate that liquid-jet photoemission spectroscopy can be used to probe interfacial surface-active-solute dynamics and dichroism effects close to ionization thresholds, in stark contrast to similar experiments on homogeneously distributed solution components. Furthermore, they offer novel insights into low-electron-kinetic-energy scattering in aqueous environments, thereby addressing the current lack of reliable experimental data in this critical energy range.
000630677 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000630677 536__ $$0G:(DE-H253)II-20210015$$aFS-Proposal: II-20210015 (II-20210015)$$cII-20210015$$x1
000630677 536__ $$0G:(DE-H253)II-20230689$$aFS-Proposal: II-20230689 (II-20230689)$$cII-20230689$$x2
000630677 536__ $$0G:(EU-Grant)883759$$aAQUACHIRAL - Chiral aqueous-phase chemistry (883759)$$c883759$$fERC-2019-ADG$$x3
000630677 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000630677 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000630677 7001_ $$0P:(DE-H253)PIP1096040$$aStemer, Dominik$$b1
000630677 7001_ $$0P:(DE-H253)PIP1017364$$aTrinter, Florian$$b2
000630677 7001_ $$0P:(DE-HGF)0$$aKiyan, Igor Yu$$b3
000630677 7001_ $$0P:(DE-H253)PIP1023483$$aWinter, Bernd$$b4
000630677 7001_ $$0P:(DE-H253)PIP1086922$$aWilkinson, Iain$$b5$$eCorresponding author
000630677 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.5c04263$$gVol. 147, no. 23, p. 19868 - 19877$$n23$$p19868 - 19877$$tJournal of the American Chemical Society$$v147$$x0002-7863$$y2025
000630677 8564_ $$uhttps://pubs.acs.org/doi/full/10.1021/jacs.5c04263
000630677 8564_ $$uhttps://bib-pubdb1.desy.de/record/630677/files/Thuermer_JACS_2025.pdf$$yOpenAccess
000630677 8564_ $$uhttps://bib-pubdb1.desy.de/record/630677/files/Thuermer_JACS_2025.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000630677 909CO $$ooai:bib-pubdb1.desy.de:630677$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000630677 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086906$$aExternal Institute$$b0$$kExtern
000630677 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096040$$aExternal Institute$$b1$$kExtern
000630677 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017364$$aExternal Institute$$b2$$kExtern
000630677 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023483$$aExternal Institute$$b4$$kExtern
000630677 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086922$$aExternal Institute$$b5$$kExtern
000630677 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000630677 9141_ $$y2025
000630677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000630677 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-13
000630677 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000630677 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000630677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000630677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000630677 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000630677 980__ $$ajournal
000630677 980__ $$aVDB
000630677 980__ $$aUNRESTRICTED
000630677 980__ $$aI:(DE-H253)HAS-User-20120731
000630677 9801_ $$aFullTexts