Journal Article PUBDB-2024-08041

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Key Proteins for Regeneration in A. mexicanum

 ;  ;  ;  ;  ;  ;  ;  ;

2024
Wiley New York, NY

Scientifica 2024(1), 5460694 () [10.1155/2024/5460694]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: The axolotl, known for its remarkable regenerative abilities, is an excellent model for studying regenerative therapies. Nevertheless, the precise molecular mechanisms governing its regenerative potential remain uncertain. In this study, we collected samples from axolotls of different ages, including 8-year-old individuals and 8-month-old juveniles, obtaining their blastemas 10 days after amputation. Subsequently, we conducted a transcriptomic analysis comparing our samples to a set of previously published experiments. Our analysis unveiled a distinctive transcriptional response in the blastema, characterized by differential gene expression associated with processes such as bone and tissue remodeling, transcriptional regulation, angiogenesis, and intercellular communication. To gain deeper insights, we compared these findings with those from aged axolotls that showed no signs of regeneration 10 days after amputation. We identified four genes—FSTL1, ADAMTS17, GPX7, and CTHRC1—that showed higher expression in regenerating tissue compared to aged axolotls. Further scrutiny, including structural and homology analysis, revealed that these genes are conserved across vertebrate species. Our discoveries point to a group of proteins relevant to tissue regeneration, with their conservation in vertebrates suggesting critical roles in development. These findings also propose a novel gene set involved in axolotl regeneration, laying a promising foundation for future investigations across vertebrates.

Classification:

Contributing Institute(s):
  1. CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / UKE - Maya Topf (CSSB-LIV/UKE-MT)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Emerging Sources Citation Index ; Fees ; IF < 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >CSSB > CSSB-LIV/UKE-MT
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2024-12-20, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)