Journal Article PUBDB-2025-03682

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts

 ;

2024
SCS Bern

Chimia 78(5), 288 - 296 () [10.2533/chimia.2024.288]
 GO

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: Solid materials like heterogeneous catalysts are highly dynamic and continuously tend to change when exposed to the reaction environment. To understand the catalyst system under true reaction conditions,operando spectroscopy is the key to unravel small changes, which can ultimately lead to a significant difference in catalytic activity and selectivity. This was also the topic of the 7th International Congress on Operando Spectroscopy in Switzerland in 2023. In this article, we discuss various examples to introduce and demonstrate the importance of this area, including examples from emission control for clean air (e.g. CO oxidation), oxidation catalysis in the chemical industry (e.g. oxidation of isobutene), future power-to-X processes (electrocatalysis, CO$_2$ hydrogenation to methanol), and non-oxidative conversion of methane. All of these processes are equally relevant to the chemical industry. Complementary operando techniques such as X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and Raman spectroscopy were utilized to derive the ultimate structure of the catalyst. The variety of conditions requires distinctly different operando cells that can reach a temperature range of 400–1000 °C and pressures up to 40 bar. The best compromise for both the spectroscopy and the catalytic reaction is needed. As an outlook, we highlight emerging methods such as modulation-excitation spectroscopy (MES) or quick-extended X-ray absorption fine structure (QEXAFS) and X-ray photon in/out techniques, which can provide better sensitivity or extend X-ray based operando studies.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. DFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799) (460248799)
  3. DFG project G:(GEPRIS)426888090 - SFB 1441: Verfolgung der aktiven Zentren in heterogenen Katalysatoren für die Emissionskontrolle (TrackAct) (426888090) (426888090)
Experiment(s):
  1. PETRA Beamline P65 (PETRA III)

Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-08-15, last modified 2025-09-03


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)