000636468 001__ 636468
000636468 005__ 20250903212808.0
000636468 0247_ $$2doi$$a10.2533/chimia.2024.288
000636468 0247_ $$2ISSN$$a0009-4293
000636468 0247_ $$2ISSN$$a2673-2424
000636468 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03682
000636468 037__ $$aPUBDB-2025-03682
000636468 041__ $$aEnglish
000636468 082__ $$a660
000636468 1001_ $$0P:(DE-H253)PIP1094186$$aSarma, Bidyut Bikash$$b0$$eCorresponding author
000636468 245__ $$aOperando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts
000636468 260__ $$aBern$$bSCS$$c2024
000636468 3367_ $$2DRIVER$$aarticle
000636468 3367_ $$2DataCite$$aOutput Types/Journal article
000636468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756905737_1758787
000636468 3367_ $$2BibTeX$$aARTICLE
000636468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000636468 3367_ $$00$$2EndNote$$aJournal Article
000636468 520__ $$aSolid materials like heterogeneous catalysts are highly dynamic and continuously tend to change when exposed to the reaction environment. To understand the catalyst system under true reaction conditions,operando spectroscopy is the key to unravel small changes, which can ultimately lead to a significant difference in catalytic activity and selectivity. This was also the topic of the 7th International Congress on Operando Spectroscopy in Switzerland in 2023. In this article, we discuss various examples to introduce and demonstrate the importance of this area, including examples from emission control for clean air (e.g. CO oxidation), oxidation catalysis in the chemical industry (e.g. oxidation of isobutene), future power-to-X processes (electrocatalysis, CO$_2$ hydrogenation to methanol), and non-oxidative conversion of methane. All of these processes are equally relevant to the chemical industry. Complementary operando techniques such as X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and Raman spectroscopy were utilized to derive the ultimate structure of the catalyst. The variety of conditions requires distinctly different operando cells that can reach a temperature range of 400–1000 °C and pressures up to 40 bar. The best compromise for both the spectroscopy and the catalytic reaction is needed. As an outlook, we highlight emerging methods such as modulation-excitation spectroscopy (MES) or quick-extended X-ray absorption fine structure (QEXAFS) and X-ray photon in/out techniques, which can provide better sensitivity or extend X-ray based operando studies.
000636468 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000636468 536__ $$0G:(GEPRIS)460248799$$aDFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799)$$c460248799$$x1
000636468 536__ $$0G:(GEPRIS)426888090$$aDFG project G:(GEPRIS)426888090 - SFB 1441: Verfolgung der aktiven Zentren in heterogenen Katalysatoren für die Emissionskontrolle (TrackAct) (426888090)$$c426888090$$x2
000636468 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000636468 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000636468 7001_ $$0P:(DE-H253)PIP1008522$$aGrunwaldt, Jan-Dierk$$b1
000636468 773__ $$0PERI:(DE-600)2179192-2$$a10.2533/chimia.2024.288$$gVol. 78, no. 5, p. 288 - 296$$n5$$p288 - 296$$tChimia$$v78$$x0009-4293$$y2024
000636468 8564_ $$uhttps://bib-pubdb1.desy.de/record/636468/files/2024_288.pdf$$yOpenAccess
000636468 8564_ $$uhttps://bib-pubdb1.desy.de/record/636468/files/2024_288.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000636468 909CO $$ooai:bib-pubdb1.desy.de:636468$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000636468 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094186$$aExternal Institute$$b0$$kExtern
000636468 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008522$$aExternal Institute$$b1$$kExtern
000636468 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000636468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000636468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000636468 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000636468 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000636468 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-11-17T10:24:37Z
000636468 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-11-17T10:24:37Z
000636468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000636468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000636468 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000636468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-11-17T10:24:37Z
000636468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000636468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000636468 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000636468 980__ $$ajournal
000636468 980__ $$aVDB
000636468 980__ $$aUNRESTRICTED
000636468 980__ $$aI:(DE-H253)HAS-User-20120731
000636468 9801_ $$aFullTexts