Journal Article PUBDB-2025-01383

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Allovalent scavenging of activation domains in the transcription factor ANAC013 gears transcriptional regulation

 ;  ;  ;  ;  ;  ;  ;  ;

2025
Oxford Univ. Press Oxford

Nucleic acids symposium series 53(4), gkaf065 () [10.1093/nar/gkaf065]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Transcriptional regulation involves interactions between transcription factors, coregulators, and DNA. Intrinsic disorder is a major player in this regulation, but mechanisms driven by disorder remain elusive. Here, we address molecular communication within the stress-regulating Arabidopsis thaliana transcription factor ANAC013. Through high-throughput screening of ANAC013 for transcriptional activation activity, we identify three activation domains within its C-terminal intrinsically disordered region. Two of these overlap with acidic islands and form dynamic interactions with the DNA-binding domain and are released, not only upon binding of target promoter DNA, but also by nonspecific DNA. We show that independently of DNA binding, the RST (RCD--SRO--TAF4) domain of the negative regulator RCD1 (Radical-induced Cell Death1) scavenges the two acidic activation domains positioned vis-à-vis through allovalent binding, leading to dynamic occupation at enhanced affinity. We propose an allovalency model for transcriptional regulation, where sequentially close activation domains in both DNA-bound and DNA-free states allow for efficient regulation. The model is likely relevant for many transcription factor systems, explaining the functional advantage of carrying sequentially close activation domains.

Classification:

Note: ISSN 1362-4962 not unique: **2 hits**.

Contributing Institute(s):
  1. EMBL-User (EMBL-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P12 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Private Collections > >EMBL > EMBL-User
Public records
Publications database
OpenAccess

 Record created 2025-04-17, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)