001     626391
005     20250723105841.0
024 7 _ |a 10.1093/nar/gkaf065
|2 doi
024 7 _ |a 0305-1048
|2 ISSN
024 7 _ |a 0261-3166
|2 ISSN
024 7 _ |a 1362-4954
|2 ISSN
024 7 _ |a 1362-4962
|2 ISSN
024 7 _ |a 1746-8272
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01383
|2 datacite_doi
024 7 _ |a WOS:001417619200001
|2 WOS
024 7 _ |a openalex:W4407426826
|2 openalex
037 _ _ |a PUBDB-2025-01383
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Delaforge, Elise
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Allovalent scavenging of activation domains in the transcription factor ANAC013 gears transcriptional regulation
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745831735_477597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1362-4962 not unique: **2 hits**.
520 _ _ |a Transcriptional regulation involves interactions between transcription factors, coregulators, and DNA. Intrinsic disorder is a major player in this regulation, but mechanisms driven by disorder remain elusive. Here, we address molecular communication within the stress-regulating Arabidopsis thaliana transcription factor ANAC013. Through high-throughput screening of ANAC013 for transcriptional activation activity, we identify three activation domains within its C-terminal intrinsically disordered region. Two of these overlap with acidic islands and form dynamic interactions with the DNA-binding domain and are released, not only upon binding of target promoter DNA, but also by nonspecific DNA. We show that independently of DNA binding, the RST (RCD--SRO--TAF4) domain of the negative regulator RCD1 (Radical-induced Cell Death1) scavenges the two acidic activation domains positioned vis-à-vis through allovalent binding, leading to dynamic occupation at enhanced affinity. We propose an allovalency model for transcriptional regulation, where sequentially close activation domains in both DNA-bound and DNA-free states allow for efficient regulation. The model is likely relevant for many transcription factor systems, explaining the functional advantage of carrying sequentially close activation domains.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 0
700 1 _ |a Due, Amanda D
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Theisen, Frederik Friis
|0 0000-0002-3412-4242
|b 2
700 1 _ |a Morffy, Nicolas
|b 3
700 1 _ |a O’Shea, Charlotte
|b 4
700 1 _ |a Blackledge, Martin
|b 5
700 1 _ |a Strader, Lucia C
|b 6
700 1 _ |a Skriver, Karen
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Kragelund, Birthe B
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1093/nar/gkaf065
|g Vol. 53, no. 4, p. gkaf065
|0 PERI:(DE-600)2205588-5
|n 4
|p gkaf065
|t Nucleic acids symposium series
|v 53
|y 2025
|x 0305-1048
856 4 _ |u https://academic.oup.com/nar/article/53/4/gkaf065/8008525
856 4 _ |u https://bib-pubdb1.desy.de/record/626391/files/Allovalent%20scavenging%20of%20activation%20domains%20in%20the%20transcription%20factor%20ANAC013%20gears%20transcriptional%20regulation.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/626391/files/Allovalent%20scavenging%20of%20activation%20domains%20in%20the%20transcription%20factor%20ANAC013%20gears%20transcriptional%20regulation.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:626391
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NUCLEIC ACIDS RES : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:02Z
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:02Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCLEIC ACIDS RES : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21