Journal Article PUBDB-2025-00594

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Analyzing multispectral emission and synchrotron data to evaluate the quality of laser welds on copper

 ;  ;  ;  ;  ;  ;  ;

2024
Laser Inst. of America Orlando, Fla.

Journal of laser applications 36(3), 032032 () [10.2351/7.0001600]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: The validation of laser welding of metallic materials is challenging due to its highly dynamic processes and limited accessibility to the weld. The measurement of process emissions and the processing laser beam are one way to record highly dynamic process phenomena. However, these recordings always take place via the surface of the weld. Phenomena on the inside are only implicitly recognizable in the data and require further processing. To increase the validity of the diagnostic process, the multispectral emission data are synchronized with synchrotron data consisting of in situ high-speed images based on phase contrast videography. The welding process is transilluminated by synchrotron radiation and recorded during execution, providing clear contrasts between solid, liquid, and gaseous material phases. Thus, dynamics of the vapor capillary and the formation of defects such as pores can be recorded with high spatial and temporal resolution of <5 μm and >5 kHz. In this paper, laser welding of copper Cu-ETP and CuSn6 is investigated at the Deutsches Elektronen-Synchrotron (DESY). The synchronization is achieved by leveraging a three-stage deep learning approach. A preprocessing Mask-R-CNN, dimensionality reduction PCA/Autoencoders, and a final LSTM/Transformer stage provide end-to-end defect detection capabilities. Integrated gradients allow for the extraction of correlations between defects and emission data. The novel approach of correlating image and sensor data increases the informative value of the sensor data. It aims to characterize welds based on the sensor data not only according to IO/NIO but also to provide a quantitative description of the defects in the weld.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. Helmholtz-Zentrum Hereon (Hereon)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. DFG project G:(GEPRIS)236616214 - SFB 1120: Bauteilpräzision durch Beherrschung von Schmelze und Erstarrung in Produktionsprozessen (236616214) (236616214)
  3. FS-Proposal: BAG-20211050 (BAG-20211050) (BAG-20211050)
Experiment(s):
  1. PETRA Beamline P07 (PETRA III)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Private Collections > >Hereon > Hereon
Public records
Publications database
OpenAccess

 Record created 2025-01-31, last modified 2025-06-25


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)