Journal Article PUBDB-2024-00357

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
Elsevier New York, NY [u.a.]

International journal of biological macromolecules 252, 126366 () [10.1016/j.ijbiomac.2023.126366]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. EMBL-User (EMBL-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. DFG project 390713860 - EXC 2051: Balance of the Microverse (390713860) (390713860)
Experiment(s):
  1. PETRA Beamline P12 (PETRA III)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Private Collections > >EMBL > EMBL-User
Public records
Publications database
OpenAccess

 Record created 2024-01-19, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)