Contribution to a conference proceedings/Journal Article PUBDB-2023-07799

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Machine learning and LHC event generation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
SciPost Foundation Amsterdam

Snowmass 2021, SeattleSeattle, United States, 17 Jul 2022 - 26 Jul 20222022-07-172022-07-26 SciPost physics 14(4), 079 () [10.21468/SciPostPhys.14.4.079]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Keyword(s): interface ; interpretation of experiments: CERN LHC Coll

Classification:

Note: Contribution to: Snowmass 2021

Contributing Institute(s):
  1. Theorie-Gruppe (T)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF4-611) (POF4-611)
  2. DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306) (390833306)
  3. DFG project G:(GEPRIS)390900948 - EXC 2181: STRUKTUREN: Emergenz in Natur, Mathematik und komplexen Daten (390900948) (390900948)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > T
Document types > Events > Contributions to a conference proceedings
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ; et al
Machine Learning and LHC Event Generation
[10.3204/PUBDB-2022-01431]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2023-12-13, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)