TY - JOUR AU - Butter, Anja AU - Plehn, Tilman AU - Schumann, Steffen AU - Badger, Simon AU - Caron, Sascha AU - Cranmer, Kyle AU - Di Bello, Francesco Armando AU - Dreyer, Etienne AU - Forte, Stefano AU - Ganguly, Sanmay AU - Gonçalves, Dorival AU - Gross, Eilam AU - Heimel, Theo AU - Heinrich, Gudrun AU - Heinrich, Lukas AU - Held, Alexander AU - Höche, Stefan AU - Howard, Jessica N. AU - Ilten, Philip AU - Isaacson, Joshua AU - Janßen, Timo AU - Jones, Stephen AU - Kado, Marumi AU - Kagan, Michael AU - Kasieczka, Gregor AU - Kling, Felix AU - Kraml, Sabine AU - Krause, Claudius AU - Krauss, Frank AU - Kröninger, Kevin AU - Barman, Rahool Kumar AU - Luchmann, Michel AU - Magerya, Vitaly AU - Maitre, Daniel AU - Malaescu, Bogdan AU - Maltoni, Fabio AU - Martini, Till AU - Mattelaer, Olivier AU - Nachman, Benjamin AU - Pitz, Sebastian AU - Rojo, Juan AU - Schwartz, Matthew AU - Shih, David AU - Siegert, Frank AU - Stegeman, Roy AU - Stienen, Bob AU - Thaler, Jesse AU - Verheyen, Rob AU - Whiteson, Daniel AU - Winterhalder, Ramon AU - Zupan, Jure TI - Machine learning and LHC event generation JO - SciPost physics VL - 14 IS - 4 SN - 2542-4653 CY - Amsterdam PB - SciPost Foundation M1 - PUBDB-2023-07799 SP - 079 PY - 2023 N1 - Contribution to: Snowmass 2021 AB - First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem. T2 - Snowmass 2021 CY - 17 Jul 2022 - 26 Jul 2022, Seattle (United States) Y2 - 17 Jul 2022 - 26 Jul 2022 M2 - Seattle, United States KW - interface (INSPIRE) KW - interpretation of experiments: CERN LHC Coll (INSPIRE) LB - PUB:(DE-HGF)8 ; PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:000996367300018 DO - DOI:10.21468/SciPostPhys.14.4.079 UR - https://bib-pubdb1.desy.de/record/600225 ER -