Journal Article PUBDB-2023-00122

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties

 ;  ;  ;  ;  ;  ;  ;

2022
Elsevier Science Amsterdam [u.a.]

Chemosphere 305, 135467 () [10.1016/j.chemosphere.2022.135467]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Metal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H$_2$O)]·DMF (BTC – trimesate, DMF = N,N′-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at −196 °C showed a BET surface area of 605 m$^2$ g$^{−1}$ and pore volume of 0.24 cm$^3$ g$^{−1}$. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % −196 °C and −186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11–98%.

Classification:

Note: Waiting for fulltext

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)
Experiment(s):
  1. DORIS Beamline BW5 (DORIS III)

Appears in the scientific report 2022
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2023-01-11, last modified 2025-07-24


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)