001     491384
005     20250724152200.0
024 7 _ |a 10.1016/j.chemosphere.2022.135467
|2 doi
024 7 _ |a 0045-6535
|2 ISSN
024 7 _ |a 1879-1298
|2 ISSN
024 7 _ |a 35764119
|2 pmid
024 7 _ |a WOS:000822569100005
|2 WOS
024 7 _ |a openalex:W4283455138
|2 openalex
037 _ _ |a PUBDB-2023-00122
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Garg, Akash
|b 0
245 _ _ |a Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674742327_15601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Metal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H$_2$O)]·DMF (BTC – trimesate, DMF = N,N′-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at −196 °C showed a BET surface area of 605 m$^2$ g$^{−1}$ and pore volume of 0.24 cm$^3$ g$^{−1}$. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % −196 °C and −186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11–98%.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a DORIS III
|f DORIS Beamline BW5
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW5-20150101
|6 EXP:(DE-H253)D-BW5-20150101
|x 0
700 1 _ |a Almáši, Miroslav
|0 P:(DE-H253)PIP1012651
|b 1
|e Corresponding author
700 1 _ |a Bednarčík, Jozef
|0 P:(DE-H253)PIP1005870
|b 2
700 1 _ |a Sharma, Rishabh
|b 3
700 1 _ |a Rao, Vikrant Singh
|b 4
700 1 _ |a Panchal, Priyanka
|b 5
700 1 _ |a Jain, Ankur
|b 6
700 1 _ |a Sharma, Anshu
|b 7
773 _ _ |a 10.1016/j.chemosphere.2022.135467
|g Vol. 305, p. 135467 -
|0 PERI:(DE-600)1496851-4
|p 135467
|t Chemosphere
|v 305
|y 2022
|x 0045-6535
856 4 _ |u https://bib-pubdb1.desy.de/record/491384/files/10.1016_j.chemosphere.2022.135467.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/491384/files/10.1016_j.chemosphere.2022.135467.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:491384
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1012651
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1005870
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMOSPHERE : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMOSPHERE : 2021
|d 2022-11-26
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21