000491384 001__ 491384
000491384 005__ 20250724152200.0
000491384 0247_ $$2doi$$a10.1016/j.chemosphere.2022.135467
000491384 0247_ $$2ISSN$$a0045-6535
000491384 0247_ $$2ISSN$$a1879-1298
000491384 0247_ $$2pmid$$a35764119
000491384 0247_ $$2WOS$$aWOS:000822569100005
000491384 0247_ $$2openalex$$aopenalex:W4283455138
000491384 037__ $$aPUBDB-2023-00122
000491384 041__ $$aEnglish
000491384 082__ $$a333.7
000491384 1001_ $$aGarg, Akash$$b0
000491384 245__ $$aGd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties
000491384 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000491384 3367_ $$2DRIVER$$aarticle
000491384 3367_ $$2DataCite$$aOutput Types/Journal article
000491384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674742327_15601
000491384 3367_ $$2BibTeX$$aARTICLE
000491384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000491384 3367_ $$00$$2EndNote$$aJournal Article
000491384 500__ $$aWaiting for fulltext 
000491384 520__ $$aMetal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H$_2$O)]·DMF (BTC – trimesate, DMF = N,N′-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at −196 °C showed a BET surface area of 605 m$^2$ g$^{−1}$ and pore volume of 0.24 cm$^3$ g$^{−1}$. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % −196 °C and −186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11–98%.
000491384 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000491384 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000491384 693__ $$0EXP:(DE-H253)D-BW5-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW5-20150101$$aDORIS III$$fDORIS Beamline BW5$$x0
000491384 7001_ $$0P:(DE-H253)PIP1012651$$aAlmáši, Miroslav$$b1$$eCorresponding author
000491384 7001_ $$0P:(DE-H253)PIP1005870$$aBednarčík, Jozef$$b2
000491384 7001_ $$aSharma, Rishabh$$b3
000491384 7001_ $$aRao, Vikrant Singh$$b4
000491384 7001_ $$aPanchal, Priyanka$$b5
000491384 7001_ $$aJain, Ankur$$b6
000491384 7001_ $$aSharma, Anshu$$b7
000491384 773__ $$0PERI:(DE-600)1496851-4$$a10.1016/j.chemosphere.2022.135467$$gVol. 305, p. 135467 -$$p135467$$tChemosphere$$v305$$x0045-6535$$y2022
000491384 8564_ $$uhttps://bib-pubdb1.desy.de/record/491384/files/10.1016_j.chemosphere.2022.135467.pdf$$yRestricted
000491384 8564_ $$uhttps://bib-pubdb1.desy.de/record/491384/files/10.1016_j.chemosphere.2022.135467.pdf?subformat=pdfa$$xpdfa$$yRestricted
000491384 909CO $$ooai:bib-pubdb1.desy.de:491384$$pVDB
000491384 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012651$$aExternal Institute$$b1$$kExtern
000491384 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1005870$$aExternal Institute$$b2$$kExtern
000491384 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000491384 9141_ $$y2022
000491384 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-26$$wger
000491384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMOSPHERE : 2021$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-26
000491384 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMOSPHERE : 2021$$d2022-11-26
000491384 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000491384 980__ $$ajournal
000491384 980__ $$aVDB
000491384 980__ $$aI:(DE-H253)HAS-User-20120731
000491384 980__ $$aUNRESTRICTED