Journal Article PUBDB-2020-00627

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Wiley-VCH Weinheim

Angewandte Chemie / International edition International edition 59(15), 6028 - 6036 () [10.1002/anie.201915217]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Single‐layer and multi‐layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long‐range transport properties. Here we employ a surfactant‐monolayer‐assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine‐based 2D polymer (PI‐2DP) films with square and hexagonal lattices, respectively. The synthetic PI‐2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI‐2DP are investigated by time‐resolved terahertz spectroscopy. Typically, the porphyrin‐based PI‐2DP 1 film exhibits a p‐type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V−1 s−1, superior to the previously reported polyimine based materials.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (POF3-622) (POF3-622)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2020-02-04, last modified 2025-07-29


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)