Journal Article PUBDB-2018-03293

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Kinetics of Decelerated Melting

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Wiley-VCH Weinheim

Advanced science 5(5), 1700850 () [10.1002/advs.201700850]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Melting presents one of the most prominent phenomena in condensed matter science. Its microscopic understanding, however, is still fragmented, ranging from simplistic theory to the observation of melting point depressions. Here, a multimethod experimental approach is combined with computational simulation to study the microscopic mechanism of melting between these two extremes. Crystalline structures are exploited in which melting occurs into a metastable liquid close to its glass transition temperature. The associated sluggish dynamics concur with real‐time observation of homogeneous melting. In‐depth information on the structural signature is obtained from various independent spectroscopic and scattering methods, revealing a step‐wise nature of the transition before reaching the liquid state. A kinetic model is derived in which the first reaction step is promoted by local instability events, and the second is driven by diffusive mobility. Computational simulation provides further confirmation for the sequential reaction steps and for the details of the associated structural dynamics. The successful quantitative modeling of the low‐temperature decelerated melting of zeolite crystals, reconciling homogeneous with heterogeneous processes, should serve as a platform for understanding the inherent instability of other zeolitic structures, as well as the prolific and more complex nanoporous metal–organic frameworks.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR)
Research Program(s):
  1. 6G3 - PETRA III (POF3-622) (POF3-622)
  2. FS-Proposal: I-20140514 (I-20140514) (I-20140514)
Experiment(s):
  1. PETRA Beamline P02.1 (PETRA III)

Appears in the scientific report 2018
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 5 ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2018-08-31, last modified 2025-07-29