Journal Article PUBDB-2025-02400

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Degradation of Glyphosate to Benign N‐Formyl Glycine Using MOF‐808 Nanocrystals

 ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Angewandte Chemie / International edition 64(21), e202424540 () [10.1002/anie.202424540]
 GO

This record in other databases:                                                

Please use a persistent id in citations: doi:  doi:

Abstract: Glyphosate (N-phosphonomethyl glycine, GPh) is an industrial herbicide used worldwide in modern agricultural practices. With the growing concerns regarding cumulative environmental and health effects, pathways for catalytic GPh degradation to benign products are becoming a pressing societal need. This report demonstrates that Zr-based metal–organic framework (MOF-808) with different crystal sizes and designed defect sites can be employed as an efficient heterogeneous catalyst for the complete degradation of GPh at room temperature. Importantly, the degradation mechanism produces N-formyl glycine and hydroxymethyl-phosphonate, which are largely innocuous chemicals, especially when compared to more common GPh degradation products. Nanocrystalline MOF-808 (nMOF-808) exhibits enhanced reactivity than larger MOF-808 crystals, attributed to the higher coordination of hydroxyl and water molecules to the secondary building units (SBU) as determined using a range of X-ray absorption spectroscopy (XAS) techniques. These studies indicate that the crystal size-dependency in GPh degradation is related to structural modifications on coordinative unsaturated Zr site that promote the fast exchange of weakly bonded ligands. Taken together, this study demonstrates that GPh degradation can be optimized through ligand field tuning in MOFs, which can help improve overall reactivity while also pushing the reaction toward desirable, nontoxic products.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P21.1 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; Index Chemicus ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-07-16, last modified 2025-08-31


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)