001     633798
005     20250831054622.0
024 7 _ |a 10.1002/anie.202424540
|2 doi
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a openalex:W1481167162
|2 openalex
024 7 _ |a openalex:W2189045729
|2 openalex
024 7 _ |a openalex:W2563482765
|2 openalex
024 7 _ |a openalex:W3197954196
|2 openalex
024 7 _ |a openalex:W2128584078
|2 openalex
024 7 _ |a openalex:W2111772890
|2 openalex
024 7 _ |a openalex:W2138195791
|2 openalex
024 7 _ |a openalex:W3021822965
|2 openalex
024 7 _ |a openalex:W3153136029
|2 openalex
024 7 _ |a openalex:W1613456883
|2 openalex
024 7 _ |a openalex:W2174834760
|2 openalex
024 7 _ |a openalex:W2182387951
|2 openalex
024 7 _ |a openalex:W2187068490
|2 openalex
024 7 _ |a openalex:W2884306179
|2 openalex
024 7 _ |a openalex:W2977430949
|2 openalex
024 7 _ |a openalex:W2982354183
|2 openalex
024 7 _ |a openalex:W3101053650
|2 openalex
024 7 _ |a openalex:W3143729745
|2 openalex
024 7 _ |a openalex:W3194078972
|2 openalex
024 7 _ |a openalex:W3194328473
|2 openalex
024 7 _ |a openalex:W3197487320
|2 openalex
024 7 _ |a openalex:W3200919895
|2 openalex
024 7 _ |a 10.3204/PUBDB-2025-02400
|2 datacite_doi
024 7 _ |a altmetric:175017312
|2 altmetric
024 7 _ |a pmid:40053474
|2 pmid
037 _ _ |a PUBDB-2025-02400
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Prada, Jhair A. Peña
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Degradation of Glyphosate to Benign N‐Formyl Glycine Using MOF‐808 Nanocrystals
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756204911_3033873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glyphosate (N-phosphonomethyl glycine, GPh) is an industrial herbicide used worldwide in modern agricultural practices. With the growing concerns regarding cumulative environmental and health effects, pathways for catalytic GPh degradation to benign products are becoming a pressing societal need. This report demonstrates that Zr-based metal–organic framework (MOF-808) with different crystal sizes and designed defect sites can be employed as an efficient heterogeneous catalyst for the complete degradation of GPh at room temperature. Importantly, the degradation mechanism produces N-formyl glycine and hydroxymethyl-phosphonate, which are largely innocuous chemicals, especially when compared to more common GPh degradation products. Nanocrystalline MOF-808 (nMOF-808) exhibits enhanced reactivity than larger MOF-808 crystals, attributed to the higher coordination of hydroxyl and water molecules to the secondary building units (SBU) as determined using a range of X-ray absorption spectroscopy (XAS) techniques. These studies indicate that the crystal size-dependency in GPh degradation is related to structural modifications on coordinative unsaturated Zr site that promote the fast exchange of weakly bonded ligands. Taken together, this study demonstrates that GPh degradation can be optimized through ligand field tuning in MOFs, which can help improve overall reactivity while also pushing the reaction toward desirable, nontoxic products.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Navarro, Tatiana A. Huertas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chua, Stephanie L.
|0 P:(DE-H253)PIP1107903
|b 2
700 1 _ |a Granados, Alejandro M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pao, Chih-Wen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fracaroli, Alejandro M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bedford, Nicholas M.
|0 P:(DE-H253)PIP1092742
|b 6
|e Corresponding author
773 _ _ |a 10.1002/anie.202424540
|g Vol. 64, no. 21, p. e202424540
|0 PERI:(DE-600)2011836-3
|n 21
|p e202424540
|t Angewandte Chemie / International edition
|v 64
|y 2025
|x 1433-7851
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/633798/files/PDF-file.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/633798/files/PDF-file.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:633798
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1107903
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1092742
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21