000633798 001__ 633798
000633798 005__ 20250831054622.0
000633798 0247_ $$2doi$$a10.1002/anie.202424540
000633798 0247_ $$2ISSN$$a1433-7851
000633798 0247_ $$2ISSN$$a0570-0833
000633798 0247_ $$2ISSN$$a1521-3773
000633798 0247_ $$2openalex$$aopenalex:W1481167162
000633798 0247_ $$2openalex$$aopenalex:W2189045729
000633798 0247_ $$2openalex$$aopenalex:W2563482765
000633798 0247_ $$2openalex$$aopenalex:W3197954196
000633798 0247_ $$2openalex$$aopenalex:W2128584078
000633798 0247_ $$2openalex$$aopenalex:W2111772890
000633798 0247_ $$2openalex$$aopenalex:W2138195791
000633798 0247_ $$2openalex$$aopenalex:W3021822965
000633798 0247_ $$2openalex$$aopenalex:W3153136029
000633798 0247_ $$2openalex$$aopenalex:W1613456883
000633798 0247_ $$2openalex$$aopenalex:W2174834760
000633798 0247_ $$2openalex$$aopenalex:W2182387951
000633798 0247_ $$2openalex$$aopenalex:W2187068490
000633798 0247_ $$2openalex$$aopenalex:W2884306179
000633798 0247_ $$2openalex$$aopenalex:W2977430949
000633798 0247_ $$2openalex$$aopenalex:W2982354183
000633798 0247_ $$2openalex$$aopenalex:W3101053650
000633798 0247_ $$2openalex$$aopenalex:W3143729745
000633798 0247_ $$2openalex$$aopenalex:W3194078972
000633798 0247_ $$2openalex$$aopenalex:W3194328473
000633798 0247_ $$2openalex$$aopenalex:W3197487320
000633798 0247_ $$2openalex$$aopenalex:W3200919895
000633798 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02400
000633798 0247_ $$2altmetric$$aaltmetric:175017312
000633798 0247_ $$2pmid$$apmid:40053474
000633798 037__ $$aPUBDB-2025-02400
000633798 041__ $$aEnglish
000633798 082__ $$a540
000633798 1001_ $$0P:(DE-HGF)0$$aPrada, Jhair A. Peña$$b0
000633798 245__ $$aDegradation of Glyphosate to Benign N‐Formyl Glycine Using MOF‐808 Nanocrystals
000633798 260__ $$aWeinheim$$bWiley-VCH$$c2025
000633798 3367_ $$2DRIVER$$aarticle
000633798 3367_ $$2DataCite$$aOutput Types/Journal article
000633798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756204911_3033873
000633798 3367_ $$2BibTeX$$aARTICLE
000633798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000633798 3367_ $$00$$2EndNote$$aJournal Article
000633798 520__ $$aGlyphosate (N-phosphonomethyl glycine, GPh) is an industrial herbicide used worldwide in modern agricultural practices. With the growing concerns regarding cumulative environmental and health effects, pathways for catalytic GPh degradation to benign products are becoming a pressing societal need. This report demonstrates that Zr-based metal–organic framework (MOF-808) with different crystal sizes and designed defect sites can be employed as an efficient heterogeneous catalyst for the complete degradation of GPh at room temperature. Importantly, the degradation mechanism produces N-formyl glycine and hydroxymethyl-phosphonate, which are largely innocuous chemicals, especially when compared to more common GPh degradation products. Nanocrystalline MOF-808 (nMOF-808) exhibits enhanced reactivity than larger MOF-808 crystals, attributed to the higher coordination of hydroxyl and water molecules to the secondary building units (SBU) as determined using a range of X-ray absorption spectroscopy (XAS) techniques. These studies indicate that the crystal size-dependency in GPh degradation is related to structural modifications on coordinative unsaturated Zr site that promote the fast exchange of weakly bonded ligands. Taken together, this study demonstrates that GPh degradation can be optimized through ligand field tuning in MOFs, which can help improve overall reactivity while also pushing the reaction toward desirable, nontoxic products.
000633798 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000633798 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000633798 693__ $$0EXP:(DE-H253)P-P21.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.1-20150101$$aPETRA III$$fPETRA Beamline P21.1$$x0
000633798 7001_ $$0P:(DE-HGF)0$$aNavarro, Tatiana A. Huertas$$b1
000633798 7001_ $$0P:(DE-H253)PIP1107903$$aChua, Stephanie L.$$b2
000633798 7001_ $$0P:(DE-HGF)0$$aGranados, Alejandro M.$$b3
000633798 7001_ $$0P:(DE-HGF)0$$aPao, Chih-Wen$$b4
000633798 7001_ $$0P:(DE-HGF)0$$aFracaroli, Alejandro M.$$b5
000633798 7001_ $$0P:(DE-H253)PIP1092742$$aBedford, Nicholas M.$$b6$$eCorresponding author
000633798 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202424540$$gVol. 64, no. 21, p. e202424540$$n21$$pe202424540$$tAngewandte Chemie / International edition$$v64$$x1433-7851$$y2025
000633798 8564_ $$uhttps://bib-pubdb1.desy.de/record/633798/files/PDF-file.pdf$$yOpenAccess
000633798 8564_ $$uhttps://bib-pubdb1.desy.de/record/633798/files/PDF-file.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000633798 909CO $$ooai:bib-pubdb1.desy.de:633798$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000633798 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107903$$aExternal Institute$$b2$$kExtern
000633798 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092742$$aExternal Institute$$b6$$kExtern
000633798 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000633798 9141_ $$y2025
000633798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000633798 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000633798 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
000633798 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000633798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000633798 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
000633798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000633798 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000633798 980__ $$ajournal
000633798 980__ $$aVDB
000633798 980__ $$aUNRESTRICTED
000633798 980__ $$aI:(DE-H253)HAS-User-20120731
000633798 9801_ $$aFullTexts