Home > Publications database > Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA |
Journal Article | PUBDB-2023-07051 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2023
North-Holland Publ.
Amsterdam
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.physletb.2023.138101
Report No.: DESY-23-034; arXiv:2303.13620
Abstract: The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the $k_{\mathrm{T}}$ jet clustering algorithm. Results are reported at high transverse momentum transfer $Q^2>150$ GeV${}^2$, and inelasticity $0.2 < y < 0.7$. The analysis is also performed in sub-regions of $Q^2$, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.
Keyword(s): electron p: deep inelastic scattering ; energy: high ; electron p: interaction ; particle: energy ; transverse momentum: high ; structure ; DESY HERA Stor ; H1 ; nuclear physics ; quark: jet ; gluon: jet ; higher-dimensional ; Berkeley Lab ; machine learning ; momentum transfer ; network ; neural network ; strong coupling ; track data analysis: jet ; data analysis method ; numerical calculations: Monte Carlo ; experimental results
![]() |
The record appears in these collections: |
Preprint
Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA
[10.3204/PUBDB-2023-01338]
Files
Fulltext by arXiv.org
BibTeX |
EndNote:
XML,
Text |
RIS