Journal Article PUBDB-2023-07051

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
North-Holland Publ. Amsterdam

Physics letters / B 844, 138101 () [10.1016/j.physletb.2023.138101]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:

Report No.: DESY-23-034; arXiv:2303.13620

Abstract: The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the $k_{\mathrm{T}}$ jet clustering algorithm. Results are reported at high transverse momentum transfer $Q^2>150$ GeV${}^2$, and inelasticity $0.2 < y < 0.7$. The analysis is also performed in sub-regions of $Q^2$, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.

Keyword(s): electron p: deep inelastic scattering ; energy: high ; electron p: interaction ; particle: energy ; transverse momentum: high ; structure ; DESY HERA Stor ; H1 ; nuclear physics ; quark: jet ; gluon: jet ; higher-dimensional ; Berkeley Lab ; machine learning ; momentum transfer ; network ; neural network ; strong coupling ; track data analysis: jet ; data analysis method ; numerical calculations: Monte Carlo ; experimental results

Classification:

Note: 30 pages, 10 figures, 8 tables, corrected authorlist

Contributing Institute(s):
  1. H1 Kollaboration (H1)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF4-611) (POF4-611)
Experiment(s):
  1. HERA: H1

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; SCOAP3 OpenAccess ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > >H1 > H1
Document types > Articles > Journal Article
Public records
Publication Charges
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ; et al
Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA
[10.3204/PUBDB-2023-01338]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2023-11-21, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)