%0 Electronic Article
%A Andreev, V.
%A Arratia, M.
%A Baghdasaryan, A.
%A Baty, A.
%A Begzsuren, K.
%A Bolz, A.
%A Boudry, V.
%A Brandt, G.
%A Britzger, D.
%A Buniatyan, A.
%A Bystritskaya, L.
%A Campbell, A. J.
%A Cantun Avila, K. B.
%A Cerny, K.
%A Chekelian, V.
%A Chen, Z.
%A Contreras, J. G.
%A Cunqueiro Mendez, L.
%A Cvach, J.
%A Dainton, J. B.
%A Daum, K.
%A Deshpande, A.
%A Diaconu, C.
%A Eckerlin, G.
%A Egli, S.
%A Elsen, E.
%A Favart, L.
%A Fedotov, A.
%A Feltesse, J.
%A Fleischer, M.
%A Fomenko, A.
%A Gal, C.
%A Gayler, J.
%A Goerlich, L.
%A Gogitidze, N.
%A Gouzevitch, M.
%A Grab, C.
%A Greenshaw, T.
%A Grindhammer, G.
%A Haidt, D.
%A Henderson, R. C. W.
%A Hladký, J.
%A Hoffmann, D.
%A Horisberger, R.
%A Hreus, T.
%A Huber, F.
%A Jacobs, P. M.
%A Jacquet, M.
%A Janssen, T.
%A Jung, A. W.
%A Jung, H.
%A Kapichine, M.
%A Katzy, J.
%A Kiesling, C.
%A Klein, M.
%A Kleinwort, C.
%A Klest, H. T.
%A Kogler, R.
%A Kostka, P.
%A Kretzschmar, J.
%A Krücker, D.
%A Krüger, K.
%A Landon, M. P. J.
%A Lange, W.
%A Laycock, P.
%A Lee, S. H.
%A Levonian, S.
%A Lin, J.
%A Lipka, K.
%A List, B.
%A List, J.
%A Li, W.
%A Lobodzinski, B.
%A Long, O. R.
%A Malinovski, E.
%A Martyn, H.-U.
%A Maxfield, S. J.
%A Mehta, A.
%A Meyer, A. B.
%A Meyer, J.
%A Mikocki, S.
%A Mikuni, V. M.
%A Mondal, M. M.
%A Morozov, A.
%A Müller, K.
%A Nachman, B.
%A Naumann, Th.
%A Newman, P. R.
%A Niebuhr, C.
%A Nowak, G.
%A Olsson, J. E.
%A Ozerov, D.
%A Park, S.
%A Pascaud, C.
%A Patel, G. D.
%A Perez, E.
%A Petrukhin, A.
%A Picuric, I.
%A Pitzl, D.
%A Polifka, R.
%A Preins, S.
%A Radescu, V.
%A Raicevic, N.
%A Ravdandorj, T.
%A Reimer, P.
%A Rizvi, E.
%A Robmann, P.
%A Roosen, R.
%A Rostovtsev, A.
%A Rotaru, M.
%A Sankey, D. P. C.
%A Sauter, M.
%A Sauvan, E.
%A Schmitt, S.
%A Schmookler, B. A.
%A Schoeffel, L.
%A Schöning, A.
%A Sefkow, F.
%A Shushkevich, S.
%A Soloviev, Y.
%A Sopicki, P.
%A South, D.
%A Spaskov, V.
%A Specka, A.
%A Steder, M.
%A Stella, B.
%A Straumann, U.
%A Sun, C.
%A Sykora, T.
%A Thompson, P. D.
%A Traynor, D.
%A Tseepeldorj, B.
%A Tu, Z.
%A Valkárová, A.
%A Vallée, C.
%A Van Mechelen, P.
%A Žáček, J.
%A Žlebčík, R.
%A Wegener, D.
%A Wünsch, E.
%A Zhang, J.
%A Zhang, Z.
%A Zohrabyan, H.
%A Zomer, F.
%T Unbinned Deep Learning Jet Substructure Measurement in High Q<sup>2</sup> ep collisions at HERA
%N DESY-23-034
%M PUBDB-2023-01338
%M DESY-23-034
%M arXiv:2303.13620
%D 2023
%Z To be submitted to Nature Physics
%X The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the k<sub>T</sub> jet clustering algorithm. Results are reported at high transverse momentum transfer Q<sup>2</sup> > 150 GeV<sup>2</sup>, and inelasticity 0.2 < y < 0.7. The analysis is also performed in sub-regions of Q<sup>2</sup>, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.
%K energy, high (INSPIRE)
%K electron p, interaction (INSPIRE)
%K particle, energy (INSPIRE)
%K transverse momentum, high (INSPIRE)
%K structure (INSPIRE)
%K DESY HERA Stor (INSPIRE)
%K nuclear physics (INSPIRE)
%K GeV (INSPIRE)
%K higher-dimensional (INSPIRE)
%K Berkeley Lab (INSPIRE)
%K machine learning (INSPIRE)
%K momentum transfer (INSPIRE)
%K network (INSPIRE)
%K neural network (INSPIRE)
%K strong coupling (INSPIRE)
%K hadron (INSPIRE)
%K Monte Carlo (INSPIRE)
%F PUB:(DE-HGF)25
%9 Preprint
%R 10.3204/PUBDB-2023-01338
%U https://bib-pubdb1.desy.de/record/580603