Preprint PUBDB-2023-01338

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023

This record in other databases:  

Please use a persistent id in citations: doi:

Report No.: DESY-23-034; arXiv:2303.13620

Abstract: The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the $k_{\mathrm{T}}$ jet clustering algorithm. Results are reported at high transverse momentum transfer $Q^2>150$ GeV${}^2$, and inelasticity $0.2 < y < 0.7$. The analysis is also performed in sub-regions of $Q^2$, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.

Keyword(s): energy, high ; electron p, interaction ; particle, energy ; transverse momentum, high ; structure ; DESY HERA Stor ; nuclear physics ; GeV ; higher-dimensional ; Berkeley Lab ; machine learning ; momentum transfer ; network ; neural network ; strong coupling ; hadron ; Monte Carlo


Note: To be submitted to Nature Physics

Contributing Institute(s):
  1. H1 Kollaboration (H1)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)
Experiment(s):
  1. HERA: H1

Appears in the scientific report 2023
Database coverage:
OpenAccess ; Published
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > >H1 > H1
Document types > Reports > Preprints
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ; et al
Unbinned Deep Learning Jet Substructure Measurement in High $Q^2$ ep collisions at HERA
Physics letters / B 844, 138101 () [10.1016/j.physletb.2023.138101]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2023-03-20, last modified 2023-11-26