Journal Article PUBDB-2023-00128

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In-situ x-ray phase contrast observation of the full penetration spot welding on limited aluminum material thickness

 ;  ;  ;  ;  ;  ;

2022
Laser Inst. of America Orlando, Fla.

Journal of laser applications 34(4), 042019 () [10.2351/7.0000772]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The laser-spot welding process of aluminum alloy 1050A with a limited thickness is observed with the x-ray phase contrast method to investigate the melt dynamic especially when the melt penetrates the material. The laser-spot welding is investigated with two different wavelengths of the laser beam source: 515 and 1030 nm to investigate the influence of the absorptivity. The melt progressively penetrates the material during the spot-welding process until reaching the bottom side of the material and when the melt penetrates the lower side of the material, the so-called “lens-like” melt appears at the lower side due to the surface tension. At a comparable beam intensity value, the oscillation of the “lens-like” melt at the lower side of the material is driven by the expansion of vapor capillary. This expansion occurs inside of the material and directly above the “lens-like” melt. The shape of the expanded vapor determines the volume as well as the geometry of the resulting melt volume. Furthermore, the transition from the heat conduction welding mode to the keyhole welding mode is investigated by defocusing the laser beam for the beam source with a 515 nm wavelength. At a given variation, a clear difference between either mode is observed with the x-ray phase contrast method.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. Helmholtz-Zentrum Hereon (Hereon)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: I-20191140 (I-20191140) (I-20191140)
  3. SFB 1120 A01 - Steuerung von Geometrie und Metallurgie beim Laserstrahl-Mikroschweißen durch Beeinflussung der Schmelzbaddynamik über örtlich und zeitlich angepassten Energieeintrag (A01) (260036706) (260036706)
Experiment(s):
  1. PETRA Beamline P07 (PETRA III)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Private Collections > >Hereon > Hereon
Public records
Publications database
OpenAccess

 Record created 2023-01-12, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)