Journal Article PUBDB-2022-06292

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Soc. Washington, DC

ACS nano 16(8), 11692 - 11707 () [10.1021/acsnano.2c01332]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.

Classification:

Contributing Institute(s):
  1. Nanolab (FS-NL)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. DFG project 192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071) (192346071)
Experiment(s):
  1. DESY NanoLab: Sample Preparation
  2. DESY NanoLab: Surface Spectroscopy

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FS > FS-NL
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2022-11-02, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)