000484479 001__ 484479
000484479 005__ 20250715175625.0
000484479 0247_ $$2doi$$a10.1021/acsnano.2c01332
000484479 0247_ $$2ISSN$$a1936-0851
000484479 0247_ $$2ISSN$$a1936-086X
000484479 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-06292
000484479 0247_ $$2altmetric$$aaltmetric:130376620
000484479 0247_ $$2pmid$$apmid:35760395
000484479 0247_ $$2WOS$$aWOS:000821910200001
000484479 0247_ $$2openalex$$aopenalex:W4283657804
000484479 037__ $$aPUBDB-2022-06292
000484479 041__ $$aEnglish
000484479 082__ $$a540
000484479 1001_ $$0P:(DE-H253)PIP1084329$$aPlunkett, Alexander$$b0
000484479 245__ $$aStrengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity
000484479 260__ $$aWashington, DC$$bSoc.$$c2022
000484479 3367_ $$2DRIVER$$aarticle
000484479 3367_ $$2DataCite$$aOutput Types/Journal article
000484479 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671027742_16276
000484479 3367_ $$2BibTeX$$aARTICLE
000484479 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000484479 3367_ $$00$$2EndNote$$aJournal Article
000484479 520__ $$aNanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
000484479 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000484479 536__ $$0G:(GEPRIS)192346071$$aDFG project 192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)$$c192346071$$x1
000484479 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000484479 693__ $$0EXP:(DE-H253)Nanolab-01-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-01-20150101$$aNanolab$$eDESY NanoLab: Sample Preparation$$x0
000484479 693__ $$0EXP:(DE-H253)Nanolab-02-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-02-20150101$$aNanolab$$eDESY NanoLab: Surface Spectroscopy$$x1
000484479 7001_ $$00000-0002-9657-5188$$aKampferbeck, Michael$$b1
000484479 7001_ $$0P:(DE-H253)PIP1081989$$aBor, Buesra$$b2
000484479 7001_ $$0P:(DE-HGF)0$$aSazama, Uta$$b3
000484479 7001_ $$0P:(DE-HGF)0$$aKrekeler, Tobias$$b4
000484479 7001_ $$0P:(DE-HGF)0$$aBekaert, Lieven$$b5
000484479 7001_ $$0P:(DE-H253)PIP1018647$$aNoei, Heshmat$$b6
000484479 7001_ $$0P:(DE-H253)PIP1033439$$aGiuntini, Diletta$$b7
000484479 7001_ $$0P:(DE-HGF)0$$aFröba, Michael$$b8
000484479 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b9
000484479 7001_ $$0P:(DE-H253)PIP1083770$$aWeller, Horst$$b10
000484479 7001_ $$0P:(DE-H253)PIP1023847$$aVossmeyer, Tobias$$b11
000484479 7001_ $$0P:(DE-H253)PIP1011038$$aSchneider, Gerold A.$$b12$$eCorresponding author
000484479 7001_ $$00000-0003-2042-4428$$aDomènech, Berta$$b13$$eCorresponding author
000484479 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.2c01332$$gVol. 16, no. 8, p. 11692 - 11707$$n8$$p11692 - 11707$$tACS nano$$v16$$x1936-0851$$y2022
000484479 8564_ $$uhttps://pubmed.ncbi.nlm.nih.gov/35760395/
000484479 8564_ $$uhttps://bib-pubdb1.desy.de/record/484479/files/acsnano.2c01332.pdf$$yOpenAccess
000484479 8564_ $$uhttps://bib-pubdb1.desy.de/record/484479/files/acsnano.2c01332.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000484479 909CO $$ooai:bib-pubdb1.desy.de:484479$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1084329$$aExternal Institute$$b0$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$60000-0002-9657-5188$$a UHH$$b1
000484479 9101_ $$0I:(DE-HGF)0$$60000-0002-9657-5188$$aExternal Institute$$b1$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081989$$aExternal Institute$$b2$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000484479 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018647$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033439$$aExternal Institute$$b7$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
000484479 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083770$$aExternal Institute$$b10$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023847$$aExternal Institute$$b11$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011038$$aExternal Institute$$b12$$kExtern
000484479 9101_ $$0I:(DE-HGF)0$$60000-0003-2042-4428$$aTUHH$$b13
000484479 9101_ $$0I:(DE-HGF)0$$60000-0003-2042-4428$$aExternal Institute$$b13$$kExtern
000484479 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000484479 9141_ $$y2022
000484479 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000484479 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000484479 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2019$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000484479 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2019$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000484479 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000484479 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000484479 980__ $$ajournal
000484479 980__ $$aVDB
000484479 980__ $$aUNRESTRICTED
000484479 980__ $$aI:(DE-H253)FS-NL-20120731
000484479 9801_ $$aFullTexts