001     484479
005     20250715175625.0
024 7 _ |a 10.1021/acsnano.2c01332
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-06292
|2 datacite_doi
024 7 _ |a altmetric:130376620
|2 altmetric
024 7 _ |a pmid:35760395
|2 pmid
024 7 _ |a WOS:000821910200001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4283657804
037 _ _ |a PUBDB-2022-06292
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Plunkett, Alexander
|0 P:(DE-H253)PIP1084329
|b 0
245 _ _ |a Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671027742_16276
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|x 0
|f POF IV
536 _ _ |a DFG project 192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)
|0 G:(GEPRIS)192346071
|c 192346071
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a Nanolab
|e DESY NanoLab: Sample Preparation
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-01-20150101
|5 EXP:(DE-H253)Nanolab-01-20150101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: Surface Spectroscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-02-20150101
|5 EXP:(DE-H253)Nanolab-02-20150101
|x 1
700 1 _ |a Kampferbeck, Michael
|0 0000-0002-9657-5188
|b 1
700 1 _ |a Bor, Buesra
|0 P:(DE-H253)PIP1081989
|b 2
700 1 _ |a Sazama, Uta
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krekeler, Tobias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bekaert, Lieven
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Noei, Heshmat
|0 P:(DE-H253)PIP1018647
|b 6
700 1 _ |a Giuntini, Diletta
|0 P:(DE-H253)PIP1033439
|b 7
700 1 _ |a Fröba, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 9
700 1 _ |a Weller, Horst
|0 P:(DE-H253)PIP1083770
|b 10
700 1 _ |a Vossmeyer, Tobias
|0 P:(DE-H253)PIP1023847
|b 11
700 1 _ |a Schneider, Gerold A.
|0 P:(DE-H253)PIP1011038
|b 12
|e Corresponding author
700 1 _ |a Domènech, Berta
|0 0000-0003-2042-4428
|b 13
|e Corresponding author
773 _ _ |a 10.1021/acsnano.2c01332
|g Vol. 16, no. 8, p. 11692 - 11707
|0 PERI:(DE-600)2383064-5
|n 8
|p 11692 - 11707
|t ACS nano
|v 16
|y 2022
|x 1936-0851
856 4 _ |u https://pubmed.ncbi.nlm.nih.gov/35760395/
856 4 _ |u https://bib-pubdb1.desy.de/record/484479/files/acsnano.2c01332.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/484479/files/acsnano.2c01332.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:484479
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1084329
910 1 _ |a UHH
|0 I:(DE-HGF)0
|b 1
|6 0000-0002-9657-5188
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-9657-5188
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1081989
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1018647
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1033439
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1012873
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1083770
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1023847
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1011038
910 1 _ |a TUHH
|0 I:(DE-HGF)0
|b 13
|6 0000-0003-2042-4428
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 0000-0003-2042-4428
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21