Home > Publications database > Time-of-flight photoelectron momentum microscopy with 80–500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter |
Journal Article | PUBDB-2021-05248 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2021
Wiley-Blackwell
[S.l.]
This record in other databases:
Please use a persistent id in citations: doi:10.1107/S1600577521010511 doi:10.3204/PUBDB-2021-05248
Abstract: The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (similar to 80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical 'pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAXII) and 1.25 MHz (at BESSYII). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to < 800 nm. In this novel approach to `sub-mu m-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.
![]() |
The record appears in these collections: |