000472792 001__ 472792
000472792 005__ 20250724175842.0
000472792 0247_ $$2doi$$a10.1107/S1600577521010511
000472792 0247_ $$2ISSN$$a0909-0495
000472792 0247_ $$2ISSN$$a1600-5775
000472792 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-05248
000472792 0247_ $$2altmetric$$aaltmetric:116158680
000472792 0247_ $$2pmid$$a34738944
000472792 0247_ $$2WOS$$aWOS:000715906300024
000472792 0247_ $$2openalex$$aopenalex:W3211118970
000472792 037__ $$aPUBDB-2021-05248
000472792 041__ $$aEnglish
000472792 082__ $$a550
000472792 1001_ $$0P:(DE-H253)PIP1012054$$aSchönhense, G.$$b0$$eCorresponding author
000472792 245__ $$aTime-of-flight photoelectron momentum microscopy with 80–500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter
000472792 260__ $$a[S.l.]$$bWiley-Blackwell$$c2021
000472792 3367_ $$2DRIVER$$aarticle
000472792 3367_ $$2DataCite$$aOutput Types/Journal article
000472792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1717061846_643786
000472792 3367_ $$2BibTeX$$aARTICLE
000472792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000472792 3367_ $$00$$2EndNote$$aJournal Article
000472792 520__ $$aThe small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (similar to 80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical 'pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAXII) and 1.25 MHz (at BESSYII). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to < 800 nm. In this novel approach to `sub-mu m-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.
000472792 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000472792 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000472792 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000472792 7001_ $$0P:(DE-H253)PIP1007782$$aMedjanik, K.$$b1
000472792 7001_ $$0P:(DE-H253)PIP1026955$$aFedchenko, O.$$b2
000472792 7001_ $$0P:(DE-H253)PIP1026785$$aZymakova, Anna$$b3
000472792 7001_ $$0P:(DE-H253)PIP1026959$$aChernov, S.$$b4
000472792 7001_ $$0P:(DE-H253)PIP1010190$$aKutnyakhov, Dmytro$$b5$$udesy
000472792 7001_ $$0P:(DE-H253)PIP1031997$$aVasilyev, D.$$b6
000472792 7001_ $$0P:(DE-H253)PIP1018818$$aBabenkov, S.$$b7
000472792 7001_ $$0P:(DE-H253)PIP1015647$$aElmers, H. J.$$b8
000472792 7001_ $$0P:(DE-HGF)0$$aBaumgärtel, P.$$b9
000472792 7001_ $$00000-0003-1385-1261$$aGoslawski, P.$$b10
000472792 7001_ $$0P:(DE-H253)PIP1025903$$aÖhrwall, G.$$b11
000472792 7001_ $$0P:(DE-HGF)0$$aGrunske, T.$$b12
000472792 7001_ $$00000-0003-0737-0285$$aKauerhof, T.$$b13
000472792 7001_ $$0P:(DE-HGF)0$$avon Volkmann, K.$$b14
000472792 7001_ $$0P:(DE-HGF)0$$aKallmayer, M.$$b15
000472792 7001_ $$0P:(DE-H253)PIP1027803$$aEllguth, M.$$b16
000472792 7001_ $$0P:(DE-H253)PIP1017991$$aOelsner, A.$$b17
000472792 773__ $$0PERI:(DE-600)2021413-3$$a10.1107/S1600577521010511$$gVol. 28, no. 6, p. 1891 - 1908$$n6$$p1891 - 1908$$tJournal of synchrotron radiation$$v28$$x0909-0495$$y2021
000472792 8564_ $$uhttps://bib-pubdb1.desy.de/record/472792/files/il5070.pdf$$yOpenAccess
000472792 8564_ $$uhttps://bib-pubdb1.desy.de/record/472792/files/il5070.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000472792 909CO $$ooai:bib-pubdb1.desy.de:472792$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012054$$aExternal Institute$$b0$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007782$$aExternal Institute$$b1$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026955$$aExternal Institute$$b2$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026785$$aExternal Institute$$b3$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026959$$aExternal Institute$$b4$$kExtern
000472792 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1010190$$aEuropean XFEL$$b5$$kXFEL.EU
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1031997$$aExternal Institute$$b6$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018818$$aExternal Institute$$b7$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015647$$aExternal Institute$$b8$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025903$$aExternal Institute$$b11$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027803$$aExternal Institute$$b16$$kExtern
000472792 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017991$$aExternal Institute$$b17$$kExtern
000472792 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000472792 9141_ $$y2021
000472792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000472792 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000472792 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SYNCHROTRON RADIAT : 2019$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000472792 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000472792 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-04
000472792 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000472792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000472792 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000472792 980__ $$ajournal
000472792 980__ $$aVDB
000472792 980__ $$aI:(DE-H253)HAS-User-20120731
000472792 980__ $$aUNRESTRICTED
000472792 9801_ $$aFullTexts