| Home > Publications database > On the Separation of Variables for the Modular XXZ Magnet and the Lattice Sinh-Gordon Models |
| Journal Article | PUBDB-2019-02813 |
; ;
2019
Springer International Publishing AG
Cham, Switzerland
This record in other databases:
Please use a persistent id in citations: doi:10.1007/s00023-019-00806-2 doi:10.3204/PUBDB-2019-02813
Report No.: DESY-18-088; arXiv:1806.04487
Abstract: We construct the generalised eigenfunctions of the entries of the monodromy matrix of the N-site modular XXZ magnet and show, in each case, that these form a complete orthogonal system in $L^{2}(\mathbb{R}^{N})$. In particular, we develop a new and simple technique, allowing one to prove the completeness of such systems. As a corollary of our analysis, we prove the Bytsko–Teschner conjecture relative to the structure of the spectrum of the $B(λ)$-operator for the odd length lattice Sinh-Gordon model.
Keyword(s): modular ; lattice field theory ; magnet ; monodromy ; XXZ model ; sine-Gordon model ; operator: spectrum ; Hilbert space ; Mellin transformation
; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
|
The record appears in these collections: |
Preprint/Report
On the separation of variables for the modular XXZ magnet and the lattice Sinh-Gordon models
[10.3204/PUBDB-2018-02538]
Files
Fulltext by arXiv.org
BibTeX |
EndNote:
XML,
Text |
RIS