%0 Electronic Article
%A Derkachov, Sergey E.
%A Kozlowski, Karol K.
%A Manashov, Alexander N.
%T On the separation of variables for the modular XXZ magnet and the lattice Sinh-Gordon models
%N DESY-18-088
%M PUBDB-2018-02538
%M DESY-18-088
%M arXiv:1806.04487
%D 2018
%X We construct the generalised Eigenfunctions of the entries of the monodromy matrix of the N-site modular XXZ magnet and show, in each case, that these form a complete orthogonal system in L<sup>2</sup>(\mathbbR<sup>N</sup>). In particular, we develop a new and simple technique, allowing one to prove the completeness of such systems. As a corollary of out analysis, we prove the Bystko-Teschner conjecture relative to the structure of the spectrum of the B (λ)-operator for the odd length lattice Sinh-Gordon model.
%K modular (INSPIRE)
%K lattice field theory (INSPIRE)
%K magnet (INSPIRE)
%K monodromy (INSPIRE)
%K XXZ model (INSPIRE)
%K sine-Gordon model (INSPIRE)
%K operator: spectrum (INSPIRE)
%K Hilbert space (INSPIRE)
%K Mellin transformation (INSPIRE)
%F PUB:(DE-HGF)25 ; PUB:(DE-HGF)29
%9 PreprintReport
%R 10.3204/PUBDB-2018-02538
%U https://bib-pubdb1.desy.de/record/407554