%0 Journal Article
%A Derkachov, Sergey É.
%A Kozlowski, Karol K.
%A Manashov, Alexander N.
%T On the Separation of Variables for the Modular XXZ Magnet and the Lattice Sinh-Gordon Models
%J Annales Henri Poincaré
%V 20
%N 8
%@ 1424-0637
%C Cham, Switzerland
%I Springer International Publishing AG
%M PUBDB-2019-02813
%M arXiv:1806.04487
%M DESY-18-088
%P 2623 - 2670
%D 2019
%Z (c) Springer Nature Switzerland AG
%X We construct the generalised eigenfunctions of the entries of the monodromy matrix of the N-site modular XXZ magnet and show, in each case, that these form a complete orthogonal system in L<sup>2</sup>(\mathbbR<sup>N</sup>). In particular, we develop a new and simple technique, allowing one to prove the completeness of such systems. As a corollary of our analysis, we prove the Bytsko–Teschner conjecture relative to the structure of the spectrum of the B(λ)-operator for the odd length lattice Sinh-Gordon model.
%K modular (INSPIRE)
%K lattice field theory (INSPIRE)
%K magnet (INSPIRE)
%K monodromy (INSPIRE)
%K XXZ model (INSPIRE)
%K sine-Gordon model (INSPIRE)
%K operator: spectrum (INSPIRE)
%K Hilbert space (INSPIRE)
%K Mellin transformation (INSPIRE)
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:000475516100004
%R 10.1007/s00023-019-00806-2
%U https://bib-pubdb1.desy.de/record/424236