Journal Article PUBDB-2017-05721

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microtubule oscillations. Role of nucleation and microtubule number concentration

 ;  ;  ;

1990
Soc. Bethesda, Md.

The journal of biological chemistry 265(8), 4382-4388 ()
 GO

This record in other databases:    

Abstract: Microtubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.

Keyword(s): Macromolecular Substances ; Microtubule Proteins ; Tubulin ; Guanosine Diphosphate ; Guanosine Triphosphate

Classification:

Note: HASYLAB

Contributing Institute(s):
  1. DESY Retrocat (DESY(-2012))
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)
Experiment(s):
  1. No specific instrument

Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > DESY(-2012)
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2017-06-21, last modified 2021-11-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)