001     329083
005     20211110142354.0
024 7 _ |a pmid:2307670
|2 pmid
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
037 _ _ |a PUBDB-2017-05721
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Obermann, H.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microtubule oscillations. Role of nucleation and microtubule number concentration
260 _ _ |a Bethesda, Md.
|c 1990
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498641257_21124
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a HASYLAB
520 _ _ |a Microtubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to PubMed,
650 _ 7 |a Macromolecular Substances
|2 NLM Chemicals
650 _ 7 |a Microtubule Proteins
|2 NLM Chemicals
650 _ 7 |a Tubulin
|2 NLM Chemicals
650 _ 7 |a Guanosine Diphosphate
|0 146-91-8
|2 NLM Chemicals
650 _ 7 |a Guanosine Triphosphate
|0 86-01-1
|2 NLM Chemicals
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Mandelkow, E. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lange, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mandelkow, E.
|0 P:(DE-HGF)0
|b 3
773 _ _ |g Vol. 265, no. 8
|0 PERI:(DE-600)1474604-9
|n 8
|p 4382-4388
|t The journal of biological chemistry
|v 265
|y 1990
|x 0021-9258
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:329083
|p VDB
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-H253)DESY_-2012_-20170516
|k DESY(-2012)
|l DESY Retrocat
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)DESY_-2012_-20170516
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21