000329083 001__ 329083
000329083 005__ 20211110142354.0
000329083 0247_ $$2pmid$$apmid:2307670
000329083 0247_ $$2ISSN$$a0021-9258
000329083 0247_ $$2ISSN$$a1083-351X
000329083 037__ $$aPUBDB-2017-05721
000329083 041__ $$aEnglish
000329083 082__ $$a570
000329083 1001_ $$0P:(DE-HGF)0$$aObermann, H.$$b0
000329083 245__ $$aMicrotubule oscillations. Role of nucleation and microtubule number concentration
000329083 260__ $$aBethesda, Md.$$bSoc.$$c1990
000329083 3367_ $$2DRIVER$$aarticle
000329083 3367_ $$2DataCite$$aOutput Types/Journal article
000329083 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498641257_21124
000329083 3367_ $$2BibTeX$$aARTICLE
000329083 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000329083 3367_ $$00$$2EndNote$$aJournal Article
000329083 500__ $$aHASYLAB
000329083 520__ $$aMicrotubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.
000329083 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000329083 588__ $$aDataset connected to PubMed,
000329083 650_7 $$2NLM Chemicals$$aMacromolecular Substances
000329083 650_7 $$2NLM Chemicals$$aMicrotubule Proteins
000329083 650_7 $$2NLM Chemicals$$aTubulin
000329083 650_7 $$0146-91-8$$2NLM Chemicals$$aGuanosine Diphosphate
000329083 650_7 $$086-01-1$$2NLM Chemicals$$aGuanosine Triphosphate
000329083 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000329083 7001_ $$0P:(DE-HGF)0$$aMandelkow, E. M.$$b1
000329083 7001_ $$0P:(DE-HGF)0$$aLange, G.$$b2
000329083 7001_ $$0P:(DE-HGF)0$$aMandelkow, E.$$b3
000329083 773__ $$0PERI:(DE-600)1474604-9$$gVol. 265, no. 8$$n8$$p4382-4388$$tThe journal of biological chemistry$$v265$$x0021-9258$$y1990
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.pdf$$yRestricted
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.gif?subformat=icon$$xicon$$yRestricted
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-180$$xicon-180$$yRestricted
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.jpg?subformat=icon-640$$xicon-640$$yRestricted
000329083 8564_ $$uhttps://bib-pubdb1.desy.de/record/329083/files/microtubule%20oscillations.pdf?subformat=pdfa$$xpdfa$$yRestricted
000329083 909CO $$ooai:bib-pubdb1.desy.de:329083$$pVDB
000329083 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000329083 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000329083 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000329083 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000329083 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2015
000329083 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000329083 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000329083 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000329083 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000329083 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000329083 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000329083 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000329083 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000329083 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000329083 9201_ $$0I:(DE-H253)DESY_-2012_-20170516$$kDESY(-2012)$$lDESY Retrocat$$x0
000329083 980__ $$ajournal
000329083 980__ $$aVDB
000329083 980__ $$aI:(DE-H253)DESY_-2012_-20170516
000329083 980__ $$aUNRESTRICTED