Journal Article PUBDB-2016-06025

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering

 ;  ;  ;  ;  ;  ;  ;  ;

2016
Nature Publishing Group London

Nature Communications 7, 11126 () [10.1038/ncomms11126]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB’s applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases.

Classification:

Contributing Institute(s):
  1. EMBL-User (EMBL-User)
Research Program(s):
  1. 6G3 - PETRA III (POF3-622) (POF3-622)
Experiment(s):
  1. PETRA Beamline P14 (PETRA III)

Appears in the scientific report 2016
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Private Collections > >EMBL > EMBL-User
Public records
Publications database
OpenAccess

 Record created 2016-12-08, last modified 2025-07-30


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)