Journal Article PUBDB-2026-00249

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
CaloChallenge 2022: a community challenge for fast calorimeter simulation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
IOP Publ. Bristol

Reports on progress in physics 88(11), 116201 () [10.1088/1361-6633/ae1304]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Report No.: FERMILAB-PUB-24-0728-CMS; HEPHY-ML-24-05; TTK-24-43; arXiv:2410.21611

Abstract: We present the results of the ‘Fast Calorimeter Simulation Challenge 2022’—the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows, diffusion models, and models based on conditional flow matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in one-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.Report Numbers: HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43.

Keyword(s): CaloChallenge 2022 ; calorimeter ; simulation ; generative AI ; machine learning

Classification:

Note: cc-by-nc-nd, 204 pages, 100+ figures, 30+ tables; v2: matches published version

Contributing Institute(s):
  1. LHC/CMS Experiment (CMS)
  2. Informationstechnologie (IT)
  3. Technol. zukünft. Teilchenph. Experim. (FTX)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF4-611) (POF4-611)
  2. DFG project G:(GEPRIS)396021762 - TRR 257: Phänomenologische Elementarteilchenphysik nach der Higgs-Entdeckung (396021762) (396021762)
  3. DFG project G:(GEPRIS)390833306 - EXC 2121: Das Quantisierte Universum II (390833306) (390833306)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > >FTX > FTX
Private Collections > >DESY > >FH > >IT > IT
Private Collections > >DESY > >FH > CMS
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ; et al
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
 GO arXiv  Download fulltext Files  Download fulltextFulltext Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2026-01-13, last modified 2026-01-27


Published on 2025-10-14. Available in OpenAccess from 2026-10-14.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External links:
Download fulltextFulltext
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)