001     643502
005     20260127095707.0
024 7 _ |a 10.1088/1361-6633/ae1304
|2 doi
024 7 _ |a Krause:2024avx
|2 INSPIRETeX
024 7 _ |a inspire:2843542
|2 inspire
024 7 _ |a 0034-4885
|2 ISSN
024 7 _ |a 1361-6633
|2 ISSN
024 7 _ |a arXiv:2410.21611
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2026-00249
|2 datacite_doi
037 _ _ |a PUBDB-2026-00249
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2410.21611
|2 arXiv
088 _ _ |a HEPHY-ML-24-05
|2 Other
088 _ _ |a FERMILAB-PUB-24-0728-CMS
|2 CMS
088 _ _ |a TTK-24-43
|2 Other
100 1 _ |a Krause, Claudius
|0 P:(DE-H253)PIP1011930
|b 0
|e Corresponding author
245 _ _ |a CaloChallenge 2022: a community challenge for fast calorimeter simulation
260 _ _ |a Bristol
|c 2025
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769416653_2701572
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a cc-by-nc-nd, 204 pages, 100+ figures, 30+ tables; v2: matches published version
520 _ _ |a We present the results of the ‘Fast Calorimeter Simulation Challenge 2022’—the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows, diffusion models, and models based on conditional flow matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in one-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.Report Numbers: HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)396021762 - TRR 257: Phänomenologische Elementarteilchenphysik nach der Higgs-Entdeckung (396021762)
|0 G:(GEPRIS)396021762
|c 396021762
|x 1
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Das Quantisierte Universum II (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 2
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a CaloChallenge 2022
|2 autogen
650 _ 7 |a calorimeter
|2 autogen
650 _ 7 |a simulation
|2 autogen
650 _ 7 |a generative AI
|2 autogen
650 _ 7 |a machine learning
|2 autogen
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Faucci Giannelli, Michele
|0 0000-0003-3731-820X
|b 1
700 1 _ |a Kasieczka, Gregor
|0 P:(DE-H253)PIP1081743
|b 2
700 1 _ |a Nachman, Benjamin
|0 P:(DE-H253)PIP1095640
|b 3
700 1 _ |a Salamani, Dalila
|0 0000-0002-8780-5885
|b 4
700 1 _ |a Shih, David
|0 0000-0003-3408-3871
|b 5
700 1 _ |a Zaborowska, Anna
|0 0000-0001-6210-1921
|b 6
700 1 _ |a Amram, Oz
|0 0000-0002-3765-3123
|b 7
700 1 _ |a Borras, Kerstin
|0 P:(DE-H253)PIP1002900
|b 8
700 1 _ |a Buckley, Matthew R.
|0 0000-0003-1109-3460
|b 9
700 1 _ |a Buhmann, Erik
|b 10
700 1 _ |a Buss, Thorsten
|b 11
700 1 _ |a Da Costa Cardoso, Renato Paulo
|b 12
700 1 _ |a Caterini, Anthony L.
|0 0000-0002-0758-9562
|b 13
700 1 _ |a Chernyavskaya, Nadezda
|0 0000-0002-2264-2229
|b 14
700 1 _ |a Corchia, Federico A. G.
|0 0000-0002-1788-3204
|b 15
700 1 _ |a Cresswell, Jesse C.
|0 0000-0002-9284-8804
|b 16
700 1 _ |a Diefenbacher, Sascha
|b 17
700 1 _ |a Dreyer, Etienne
|b 18
700 1 _ |a Ekambaram, Vijay
|b 19
700 1 _ |a Eren, Engin
|0 P:(DE-H253)PIP1020256
|b 20
|u desy
700 1 _ |a Ernst, Florian
|0 0009-0008-9363-6345
|b 21
700 1 _ |a Favaro, Luigi
|0 0000-0003-2421-7100
|b 22
700 1 _ |a Franchini, Matteo
|0 0000-0002-4554-252X
|b 23
700 1 _ |a Gaede, Frank
|0 P:(DE-H253)PIP1002530
|b 24
700 1 _ |a Gross, Eilam
|0 0000-0003-1244-9350
|b 25
700 1 _ |a Hsu, Shih-Chieh
|0 0000-0001-6214-8500
|b 26
700 1 _ |a Jaruskova, Kristina
|b 27
700 1 _ |a Käch, Benno
|0 P:(DE-H253)PIP1098617
|b 28
700 1 _ |a Kalagnanam, Jayant
|b 29
700 1 _ |a Kansal, Raghav
|0 0000-0003-2445-1060
|b 30
700 1 _ |a Kim, Taewoo
|b 31
700 1 _ |a Kobylianskii, Dmitrii
|0 0009-0002-0070-5900
|b 32
700 1 _ |a Korol, Anatolii
|b 33
700 1 _ |a Korcari, William
|0 P:(DE-H253)PIP1094581
|b 34
700 1 _ |a Krücker, Dirk
|0 P:(DE-H253)PIP1005319
|b 35
700 1 _ |a Krüger, Katja
|0 P:(DE-H253)PIP1000475
|b 36
|u desy
700 1 _ |a Letizia, Marco
|0 0000-0001-9641-4352
|b 37
700 1 _ |a Li, Shu
|0 P:(DE-H253)PIP1092477
|b 38
700 1 _ |a Liu, Qibin
|b 39
700 1 _ |a Liu, Xiulong
|0 0000-0001-8697-1489
|b 40
700 1 _ |a Loaiza-Ganem, Gabriel
|0 0009-0005-6767-2148
|b 41
700 1 _ |a Madula, Thandikire
|0 0000-0001-7689-8628
|b 42
700 1 _ |a McKeown, Peter
|b 43
700 1 _ |a Melzer-Pellmann, Isabell
|0 P:(DE-H253)PIP1001954
|b 44
|u desy
700 1 _ |a Mikuni, Vinicius
|0 P:(DE-H253)PIP1088204
|b 45
700 1 _ |a Nguyen, Nam
|b 46
700 1 _ |a Ore, Ayodele
|0 0000-0001-6925-3565
|b 47
700 1 _ |a Palacios Schweitzer, Sofia
|b 48
700 1 _ |a Pang, Ian
|0 0000-0002-8225-7269
|b 49
700 1 _ |a Pedro, Kevin
|0 0000-0003-2260-9151
|b 50
700 1 _ |a Plehn, Tilman
|b 51
700 1 _ |a Pokorski, Witold
|0 0009-0007-9910-414X
|b 52
700 1 _ |a Qu, Huilin
|0 0000-0002-0250-8655
|b 53
700 1 _ |a Raikwar, Piyush
|b 54
700 1 _ |a Raine, John A.
|0 0000-0002-5987-4648
|b 55
700 1 _ |a Reyes-Gonzalez, Humberto
|0 0000-0003-3283-5208
|b 56
700 1 _ |a Rinaldi, Lorenzo
|0 0000-0001-9608-9940
|b 57
700 1 _ |a Ross, Brendan Leigh
|0 0000-0003-0670-2225
|b 58
700 1 _ |a Scham, Moritz
|0 P:(DE-H253)PIP1088880
|b 59
|u desy
700 1 _ |a Schnake, Simon Patrik
|0 P:(DE-H253)PIP1026342
|b 60
|u desy
700 1 _ |a Shimmin, Chase
|0 0000-0002-2228-2251
|b 61
700 1 _ |a Shlizerman, Eli
|0 0000-0002-3136-4531
|b 62
700 1 _ |a Soybelman, Nathalie
|0 0000-0003-0209-0858
|b 63
700 1 _ |a Srivatsa, Mudhakar
|b 64
700 1 _ |a Tsolaki, Kalliopi
|0 0000-0002-3192-4260
|b 65
700 1 _ |a Vallecorsa, Sofia
|0 0000-0002-7003-5765
|b 66
700 1 _ |a Yeo, Kyongmin
|0 0000-0002-9698-5101
|b 67
700 1 _ |a Zhang, Rui
|b 68
773 _ _ |a 10.1088/1361-6633/ae1304
|g Vol. 88, no. 11, p. 116201 -
|0 PERI:(DE-600)1361309-1
|n 11
|p 116201
|t Reports on progress in physics
|v 88
|y 2025
|x 0034-4885
787 0 _ |a Krause, Claudius et.al.
|d 2024
|i IsParent
|0 PUBDB-2025-01144
|r arXiv:2410.21611 ; HEPHY-ML-24-05 ; FERMILAB-PUB-24-0728-CMS ; TTK-24-43
|t CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
856 4 _ |u https://iopscience.iop.org/article/10.1088/1361-6633/ae1304
856 4 _ |u https://bib-pubdb1.desy.de/record/643502/files/2410.21611v2.pdf
|y Published on 2025-10-14. Available in OpenAccess from 2026-10-14.
856 4 _ |u https://bib-pubdb1.desy.de/record/643502/files/Krause_2025_Rep._Prog._Phys._88_116201.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/643502/files/2410.21611v2.pdf?subformat=pdfa
|x pdfa
|y Published on 2025-10-14. Available in OpenAccess from 2026-10-14.
856 4 _ |u https://bib-pubdb1.desy.de/record/643502/files/Krause_2025_Rep._Prog._Phys._88_116201.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:643502
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1011930
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1081743
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1095640
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1002900
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1020256
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 24
|6 P:(DE-H253)PIP1002530
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1098617
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 34
|6 P:(DE-H253)PIP1094581
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-H253)PIP1094581
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 35
|6 P:(DE-H253)PIP1005319
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 36
|6 P:(DE-H253)PIP1000475
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 38
|6 P:(DE-H253)PIP1092477
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 44
|6 P:(DE-H253)PIP1001954
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 45
|6 P:(DE-H253)PIP1088204
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 59
|6 P:(DE-H253)PIP1088880
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 59
|6 P:(DE-H253)PIP1088880
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 60
|6 P:(DE-H253)PIP1026342
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b REP PROG PHYS : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REP PROG PHYS : 2022
|d 2024-12-18
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-H253)CMS-20120731
|k CMS
|l LHC/CMS Experiment
|x 0
920 1 _ |0 I:(DE-H253)IT-20120731
|k IT
|l Informationstechnologie
|x 1
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CMS-20120731
980 _ _ |a I:(DE-H253)IT-20120731
980 _ _ |a I:(DE-H253)FTX-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21