Journal Article PUBDB-2025-04464

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
3D Printable Hydrogel Based on TEMPO-Oxidized Cellulose Nanofibrils and Fmoc-FF for Enhanced Biological Performance and Cell Adhesion

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
ACS Publications Washington, DC

ACS applied nano materials 8(38), 18571 - 18583 () [10.1021/acsanm.5c03356]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Herein, we report a 3D printable ink made of a peptide-polysaccharide hybrid hydrogel composed of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and TEMPO-oxidized cellulose nanofibrils (ToCNF), synthesized using a pH-dependent sol–gel transition method. The ToCNF suspension is synthesized through the mechanical breakdown of a cellulose pulp using a microfluidizer, followed by its oxidation mediated with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). The properties of the hybrid inks are compared in the presence (ToCNF/Fmoc-FF-Ca2+) and absence (ToCNF/Fmoc-FF) of the divalent cation Ca2+, which acts as the cross-linker, at two optimized weight ratios (r) of ToCNF and Fmoc-FF (r = 4.5 and 6.5). The rheological measurements show that the yield strength of the ToCNF/Fmoc-FF-Ca2+ gel is almost double that of the hydrogel composite without Ca2+ ions, especially at the concentration (C) of 10 mM CaCl2. This finding is further verified by 3D gel printing, which produced good quality prints with the cation cross-linked hydrogel. The structural analysis by Field Emission Scanning Electron Microscopy shows that the calcium ions can cross-link the ToCNF and also enhance the self-assembly of Fmoc-FF, which leads to the formation of rigid compact nanofibers even at physiological pH. The electrostatic interaction of the positively charged Ca2+ ions onto the negatively charged surface carboxylate groups of ToCNF and Fmoc-FF is analyzed by zeta potential (ζ) measurements. Small-angle X-ray scattering measurements give deeper structural insights into the interaction of Fmoc-FF with ToCNF. Cell responses to the hydrogels are studied in human dermal fibroblasts (NHDFs) in a direct contact test using a live/dead assay and in extract test using Alamar Blue and lactate dehydrogenase assays. The results show that high loading of Fmoc-FF decreases cell viability, while additional cross-linking with calcium reduces this cytotoxic effect.

Classification:

Contributing Institute(s):
  1. FS DOOR-User (FS DOOR-User)
  2. Sustainable Materials (FS-SMA)
  3. PETRA-D (FS-PETRA-D)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  3. FS-Proposal: I-20230937 (I-20230937) (I-20230937)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > FS DOOR-User
Private Collections > >DESY > >FS > FS-PETRA-D
Private Collections > >DESY > >FS > FS-SMA
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-10-20, last modified 2025-11-19


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)