Journal Article PUBDB-2025-00326

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-dualities and Galois symmetries in Feynman integrals

 ;  ;  ;  ;

2024
Springer Heidelberg

Journal of high energy physics 2024(9), 84 () [10.1007/JHEP09(2024)084]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Report No.: arXiv:2407.08799

Abstract: It is well-known that all Feynman integrals within a given family can be expressed as a finite linear combination of master integrals. The master integrals naturally group into sectors. Starting from two loops, there can exist sectors made up of more than one master integral. In this paper we show that such sectors may have additional symmetries. First of all, self-duality, which was first observed in Feynman integrals related to Calabi-Yau geometries, often carries over to non-Calabi-Yau Feynman integrals. Secondly, we show that in addition there can exist Galois symmetries relating integrals. In the simplest case of two master integrals within a sector, whose definition involves a square root r, we may choose a basis (I$_{1}$, I$_{2}$) such that I$_{2}$ is obtained from I$_{1}$ by the substitution r → −r. This pattern also persists in sectors, which a priori are not related to any square root with dependence on the kinematic variables. We show in several examples that in such cases a suitable redefinition of the integrals introduces constant square roots like $ \sqrt{3} $. The new master integrals are then again related by a Galois symmetry, for example the substitution $ \sqrt{3} $ → $ -\sqrt{3} $. To handle the case where the argument of a square root would be a perfect square we introduce a limit Galois symmetry. Both self-duality and Galois symmetries constrain the differential equation.

Keyword(s): Differential and Algebraic Geometry ; Higher Order Electroweak Calculations ; Higher-Order Perturbative Calculations ; Scattering Amplitudes

Classification:

Note: 41 pages, v2: version to be published

Contributing Institute(s):
  1. Theorie-Gruppe (T)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF4-611) (POF4-611)
  2. DFG project G:(GEPRIS)390831469 - EXC 2118: Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA+) (390831469) (390831469)
  3. DFG project G:(GEPRIS)390783311 - EXC 2094: ORIGINS: Vom Ursprung des Universums bis zu den ersten Bausteinen des Lebens (390783311) (390783311)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; SCOAP3 OpenAccess ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; National-Konsortium ; SCOAP3 sponsored Journal ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > T
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ;  ;
Self-dualities and Galois symmetries in Feynman integrals
 GO arXiv  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2025-01-20, last modified 2025-09-29


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)