Journal Article PUBDB-2025-00315

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of Ni‐Doping on the Optical, Structural, and Electrochemical Properties of Ag 29 Nanoclusters

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Small 21(2), 2408096 () [10.1002/smll.202408096]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Atomically precise metal nanoclusters (NCs) can be compositionallycontrolled at the single-atom level, but understanding structure-propertycorrelations is required for tailoring specific optical properties. Here, theimpact of Ni atom doping on the optical, structural, and electrochemicalproperties of atomically precise 1,3-benzene dithiol (BDT) protected Ag29 NCsis studied. The Ni-doped Ag29 (NiAg28(BDT)12) NCs, are synthesized using aco-reduction method and characterized using electrospray ionization massspectrometry (ESI MS), ion mobility spectrometry (IMS), and X-rayphotoelectron spectroscopy (XPS). Only a single Ni atom doping can beachieved despite changing the precursor concentration. Ni doping in Ag29NCs exhibits enhanced thermal stability, and electrocatalytic oxygen evolutionreaction (OER) compared to the parent NCs. Density functional theory (DFT)calculations predict the geometry and optical properties of the parent andNiAg28(BDT)12 NCs. DFT is also used to study the systematic single-atomdoping effect of metals such as Au, Cu, and Pt into Ag29 NCs and suggeststhat with Ni and Pt, the d atomic orbitals contribute to creating superatomicorbitals, which is not seen with other dopants or the parent cluster. Theemission mechanism is dominated by a charge transfer from the ligands intothe Ag core cluster regardless of the dopant.A. A.

Classification:

Note: This workwas supported by the Deutsche Forschungsgemeinschaft (DFG grant PA794_28-2 to W. J. P.).

Contributing Institute(s):
  1. Nanolab (FS-NL)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. DESY NanoLab: Surface Spectroscopy

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FS > FS-NL
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-01-17, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)