Home > Publications database > Effect of Ni‐Doping on the Optical, Structural, and Electrochemical Properties of Ag 29 Nanoclusters > print |
001 | 622277 | ||
005 | 20250715171009.0 | ||
024 | 7 | _ | |a 10.1002/smll.202408096 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-00315 |2 datacite_doi |
024 | 7 | _ | |a altmetric:171039793 |2 altmetric |
024 | 7 | _ | |a pmid:39580690 |2 pmid |
024 | 7 | _ | |a WOS:001362374700001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4404657011 |
037 | _ | _ | |a PUBDB-2025-00315 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Ahmed, Abdullah Ahmed Ali |0 P:(DE-H253)PIP1100516 |b 0 |
245 | _ | _ | |a Effect of Ni‐Doping on the Optical, Structural, and Electrochemical Properties of Ag 29 Nanoclusters |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737990935_2162191 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a This workwas supported by the Deutsche Forschungsgemeinschaft (DFG grant PA794_28-2 to W. J. P.). |
520 | _ | _ | |a Atomically precise metal nanoclusters (NCs) can be compositionallycontrolled at the single-atom level, but understanding structure-propertycorrelations is required for tailoring specific optical properties. Here, theimpact of Ni atom doping on the optical, structural, and electrochemicalproperties of atomically precise 1,3-benzene dithiol (BDT) protected Ag29 NCsis studied. The Ni-doped Ag29 (NiAg28(BDT)12) NCs, are synthesized using aco-reduction method and characterized using electrospray ionization massspectrometry (ESI MS), ion mobility spectrometry (IMS), and X-rayphotoelectron spectroscopy (XPS). Only a single Ni atom doping can beachieved despite changing the precursor concentration. Ni doping in Ag29NCs exhibits enhanced thermal stability, and electrocatalytic oxygen evolutionreaction (OER) compared to the parent NCs. Density functional theory (DFT)calculations predict the geometry and optical properties of the parent andNiAg28(BDT)12 NCs. DFT is also used to study the systematic single-atomdoping effect of metals such as Au, Cu, and Pt into Ag29 NCs and suggeststhat with Ni and Pt, the d atomic orbitals contribute to creating superatomicorbitals, which is not seen with other dopants or the parent cluster. Theemission mechanism is dominated by a charge transfer from the ligands intothe Ag core cluster regardless of the dopant.A. A. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Surface Spectroscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-02-20150101 |5 EXP:(DE-H253)Nanolab-02-20150101 |x 0 |
700 | 1 | _ | |a Havenridge, Shana |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sahoo, Koustav |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Thapa, Loknath |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Baksi, Ananya |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Clever, Guido |0 P:(DE-H253)PIP1031561 |b 5 |
700 | 1 | _ | |a Noei, Heshmat |0 P:(DE-H253)PIP1018647 |b 6 |u desy |
700 | 1 | _ | |a Kohantorabi, Mona |0 P:(DE-H253)PIP1097099 |b 7 |u desy |
700 | 1 | _ | |a Stierle, Andreas |0 P:(DE-H253)PIP1012873 |b 8 |u desy |
700 | 1 | _ | |a Raj, C. Retna |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Parak, Wolfgang J. |0 P:(DE-H253)PIP1085825 |b 10 |e Corresponding author |
700 | 1 | _ | |a Aikens, Christine M. |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
700 | 1 | _ | |a Chakraborty, Indranath |0 P:(DE-H253)PIP1098293 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1002/smll.202408096 |g Vol. 21, no. 2, p. 2408096 |0 PERI:(DE-600)2168935-0 |n 2 |p 2408096 |t Small |v 21 |y 2025 |x 1613-6810 |
856 | 4 | _ | |u https://onlinelibrary.wiley.com/doi/10.1002/smll.202408096?msockid=14797bbac9b5600222916f2ec8726133 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622277/files/Small%20-%202024%20-%20Ahmed%20-%20Effect%20of%20Ni%E2%80%90Doping%20on%20the%20Optical%20Structural%20and%20Electrochemical%20Properties%20of%20Ag29%20Nanoclusters.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622277/files/Small%20-%202024%20-%20Ahmed%20-%20Effect%20of%20Ni%E2%80%90Doping%20on%20the%20Optical%20Structural%20and%20Electrochemical%20Properties%20of%20Ag29%20Nanoclusters.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:622277 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a UHH |0 I:(DE-HGF)0 |b 0 |6 P:(DE-H253)PIP1100516 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1100516 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1031561 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1018647 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1097099 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1012873 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1085825 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1098293 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|