001     622277
005     20250715171009.0
024 7 _ |a 10.1002/smll.202408096
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-00315
|2 datacite_doi
024 7 _ |a altmetric:171039793
|2 altmetric
024 7 _ |a pmid:39580690
|2 pmid
024 7 _ |a WOS:001362374700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4404657011
037 _ _ |a PUBDB-2025-00315
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Ahmed, Abdullah Ahmed Ali
|0 P:(DE-H253)PIP1100516
|b 0
245 _ _ |a Effect of Ni‐Doping on the Optical, Structural, and Electrochemical Properties of Ag 29 Nanoclusters
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737990935_2162191
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This workwas supported by the Deutsche Forschungsgemeinschaft (DFG grant PA794_28-2 to W. J. P.).
520 _ _ |a Atomically precise metal nanoclusters (NCs) can be compositionallycontrolled at the single-atom level, but understanding structure-propertycorrelations is required for tailoring specific optical properties. Here, theimpact of Ni atom doping on the optical, structural, and electrochemicalproperties of atomically precise 1,3-benzene dithiol (BDT) protected Ag29 NCsis studied. The Ni-doped Ag29 (NiAg28(BDT)12) NCs, are synthesized using aco-reduction method and characterized using electrospray ionization massspectrometry (ESI MS), ion mobility spectrometry (IMS), and X-rayphotoelectron spectroscopy (XPS). Only a single Ni atom doping can beachieved despite changing the precursor concentration. Ni doping in Ag29NCs exhibits enhanced thermal stability, and electrocatalytic oxygen evolutionreaction (OER) compared to the parent NCs. Density functional theory (DFT)calculations predict the geometry and optical properties of the parent andNiAg28(BDT)12 NCs. DFT is also used to study the systematic single-atomdoping effect of metals such as Au, Cu, and Pt into Ag29 NCs and suggeststhat with Ni and Pt, the d atomic orbitals contribute to creating superatomicorbitals, which is not seen with other dopants or the parent cluster. Theemission mechanism is dominated by a charge transfer from the ligands intothe Ag core cluster regardless of the dopant.A. A.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a Nanolab
|e DESY NanoLab: Surface Spectroscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-02-20150101
|5 EXP:(DE-H253)Nanolab-02-20150101
|x 0
700 1 _ |a Havenridge, Shana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sahoo, Koustav
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thapa, Loknath
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baksi, Ananya
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Clever, Guido
|0 P:(DE-H253)PIP1031561
|b 5
700 1 _ |a Noei, Heshmat
|0 P:(DE-H253)PIP1018647
|b 6
|u desy
700 1 _ |a Kohantorabi, Mona
|0 P:(DE-H253)PIP1097099
|b 7
|u desy
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 8
|u desy
700 1 _ |a Raj, C. Retna
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Parak, Wolfgang J.
|0 P:(DE-H253)PIP1085825
|b 10
|e Corresponding author
700 1 _ |a Aikens, Christine M.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Chakraborty, Indranath
|0 P:(DE-H253)PIP1098293
|b 12
|e Corresponding author
773 _ _ |a 10.1002/smll.202408096
|g Vol. 21, no. 2, p. 2408096
|0 PERI:(DE-600)2168935-0
|n 2
|p 2408096
|t Small
|v 21
|y 2025
|x 1613-6810
856 4 _ |u https://onlinelibrary.wiley.com/doi/10.1002/smll.202408096?msockid=14797bbac9b5600222916f2ec8726133
856 4 _ |u https://bib-pubdb1.desy.de/record/622277/files/Small%20-%202024%20-%20Ahmed%20-%20Effect%20of%20Ni%E2%80%90Doping%20on%20the%20Optical%20Structural%20and%20Electrochemical%20Properties%20of%20Ag29%20Nanoclusters.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/622277/files/Small%20-%202024%20-%20Ahmed%20-%20Effect%20of%20Ni%E2%80%90Doping%20on%20the%20Optical%20Structural%20and%20Electrochemical%20Properties%20of%20Ag29%20Nanoclusters.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:622277
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a UHH
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1100516
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100516
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1031561
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1018647
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1097099
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1012873
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1085825
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1098293
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21