Journal Article PUBDB-2024-07339

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Multiwavelength Investigation of PSR J2229+6114 and its Pulsar Wind Nebula in the Radio, X-Ray, and Gamma-Ray Bands

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
Institute of Physics Publ. London

The astrophysical journal / Part 1 960(1), 75 () [10.3847/1538-4357/ad0120]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Report No.: arXiv:2310.04512

Abstract: G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (E$_{γ}$ > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (E$_{γ}$ > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWN B-field (B ∼ 3 μG) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.

Classification:

Contributing Institute(s):
  1. Cherenkov Telescope Array (Z_CTA)
Research Program(s):
  1. 613 - Matter and Radiation from the Universe (POF4-613) (POF4-613)
Experiment(s):
  1. Very Energetic Radiation Imaging Telescope Array System

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >ZEUTHEN > Z_CTA
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2024-12-05, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)