%0 Journal Article
%A Pope, I.
%A Mori, K.
%A Abdelmaguid, M.
%A Gelfand, J. D.
%A Reynolds, S. P.
%A Safi-Harb, S.
%A Hailey, C. J.
%A An, H.
%A Bangale, P.
%A Batista, P.
%A Benbow, W.
%A Buckley, J. H.
%A Capasso, M.
%A Christiansen, J. L.
%A Chromey, A. J.
%A Falcone, A.
%A Feng, Q.
%A Finley, J. P.
%A Foote, G. M.
%A Gallagher, G.
%A Hanlon, W. F.
%A Hanna, D.
%A Hervet, O.
%A Holder, J.
%A Humensky, T. B.
%A Jin, W.
%A Kaaret, P.
%A Kertzman, M.
%A Kieda, D.
%A Kleiner, T. K.
%A Korzoun, N.
%A Krennrich, F.
%A Kumar, S.
%A Lang, M. J.
%A Maier, G.
%A McGrath, C. E.
%A Mooney, C. L.
%A Moriarty, P.
%A Mukherjee, R.
%A O'Brien, S.
%A Ong, R. A.
%A Park, N.
%A Patel, S. R.
%A Pfrang, K.
%A Pohl, M.
%A Pueschel, E.
%A Quinn, J.
%A Ragan, K.
%A Reynolds, P. T.
%A Roache, E.
%A Sadeh, I.
%A Saha, L.
%A Sembroski, G. H.
%A Tak, D.
%A Tucci, J. V.
%A Weinstein, A.
%A Williams, D. A.
%A Woo, J.
%T A Multiwavelength Investigation of PSR J2229+6114 and its Pulsar Wind Nebula in the Radio, X-Ray, and Gamma-Ray Bands
%J The astrophysical journal / Part 1
%V 960
%N 1
%@ 0004-637X
%C London
%I Institute of Physics Publ.
%M PUBDB-2024-07339
%M arXiv:2310.04512
%P 75
%D 2024
%X G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (E<sub>γ</sub> > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (E<sub>γ</sub> > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWN B-field (B ∼ 3 μG) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:001136394600001
%R 10.3847/1538-4357/ad0120
%U https://bib-pubdb1.desy.de/record/619039