Home > Publications database > Phase transition kinetics of superionic $H_2O$ ice phases revealed by MHz XFEL heating experiments |
Journal Article | PUBDB-2024-05368 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2024
Nature Publishing Group UK
[London]
This record in other databases:
Please use a persistent id in citations: doi:10.1038/s41467-024-52505-0 doi:10.3204/PUBDB-2024-05368
Abstract: H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in these runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers.
![]() |
The record appears in these collections: |