Home > Publications database > Phase transition kinetics of superionic $H_2O$ ice phases revealed by MHz XFEL heating experiments > print |
001 | 612515 | ||
005 | 20250804171611.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-52505-0 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-05368 |2 datacite_doi |
024 | 7 | _ | |a altmetric:168171815 |2 altmetric |
024 | 7 | _ | |a pmid:39313509 |2 pmid |
024 | 7 | _ | |a WOS:001320768800004 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4402748065 |
037 | _ | _ | |a PUBDB-2024-05368 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Husband, Rachel |0 P:(DE-H253)PIP1016653 |b 0 |e Corresponding author |
245 | _ | _ | |a Phase transition kinetics of superionic $H_2O$ ice phases revealed by MHz XFEL heating experiments |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734079969_1158399 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a We acknowledge support from the Deutsche For-schungsgemeinschaft (DFG) Research Unit FOR 2440 grants SA2585/5-1 (R.J.H, A.M., C.S.V., and H.P.L) and AP262/2-2 (K.A.). |
520 | _ | _ | |a H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in these runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a DFG project 280637173 - FOR 2440: Materie im Inneren von Planeten - Hochdruck-, Planeten- und Plasmaphysik (280637173) |0 G:(GEPRIS)280637173 |c 280637173 |x 2 |
542 | _ | _ | |i 2024-09-23 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-09-23 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a XFEL |e HED: High-Density matter Experiments |f SASE2 |1 EXP:(DE-H253)XFEL-20150101 |0 EXP:(DE-H253)XFEL-HED-20150101 |5 EXP:(DE-H253)XFEL-HED-20150101 |6 EXP:(DE-H253)XFEL-SASE2-20150101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P02.2 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.2-20150101 |6 EXP:(DE-H253)P-P02.2-20150101 |x 1 |
700 | 1 | _ | |a Liermann, Hanns-Peter |0 P:(DE-H253)PIP1007496 |b 1 |
700 | 1 | _ | |a McHardy, James |0 P:(DE-H253)PIP1090734 |b 2 |
700 | 1 | _ | |a Mcwilliams, Ryan Stewart |0 P:(DE-H253)PIP1021535 |b 3 |
700 | 1 | _ | |a Goncharov, Alexander |0 P:(DE-H253)PIP1015299 |b 4 |
700 | 1 | _ | |a Prakapenka, Vitali |0 P:(DE-H253)PIP1015486 |b 5 |
700 | 1 | _ | |a Edmund, Eric |0 P:(DE-H253)PIP1087596 |b 6 |
700 | 1 | _ | |a Chariton, Stella |0 P:(DE-H253)PIP1030952 |b 7 |
700 | 1 | _ | |a Konopkova, Zuzana |0 P:(DE-H253)PIP1013606 |b 8 |
700 | 1 | _ | |a Strohm, Cornelius |0 P:(DE-H253)PIP1017102 |b 9 |
700 | 1 | _ | |a Sanchez-Valle, Carmen |0 P:(DE-H253)PIP1029102 |b 10 |
700 | 1 | _ | |a Frost, Mungo |0 P:(DE-H253)PIP1019042 |b 11 |
700 | 1 | _ | |a Andriambariarijaona, Leon |0 P:(DE-H253)PIP1098592 |b 12 |
700 | 1 | _ | |a Appel, Karen |0 P:(DE-H253)PIP1001646 |b 13 |
700 | 1 | _ | |a Baehtz, Carsten |0 P:(DE-H253)PIP1009336 |b 14 |
700 | 1 | _ | |a Ball, Orianna |0 P:(DE-H253)PIP1087218 |b 15 |
700 | 1 | _ | |a Briggs, Richard |0 P:(DE-H253)PIP1026094 |b 16 |
700 | 1 | _ | |a Buchen, Johannes |0 P:(DE-H253)PIP1025558 |b 17 |
700 | 1 | _ | |a Cerantola, Valerio |0 P:(DE-H253)PIP1019116 |b 18 |
700 | 1 | _ | |a Choi, Jinhyuk |0 P:(DE-H253)PIP1080452 |b 19 |
700 | 1 | _ | |a Coleman, Amy |0 P:(DE-H253)PIP1085033 |b 20 |
700 | 1 | _ | |a CYNN, HYUNCHAE |0 P:(DE-H253)PIP1015324 |b 21 |
700 | 1 | _ | |a Dwivedi, Anand |0 P:(DE-H253)PIP1094567 |b 22 |
700 | 1 | _ | |a Graafsma, Heinz |0 P:(DE-H253)PIP1005340 |b 23 |
700 | 1 | _ | |a Hwang, Huijeong |0 P:(DE-H253)PIP1080451 |b 24 |
700 | 1 | _ | |a Koemets, Egor |0 P:(DE-H253)PIP1032202 |b 25 |
700 | 1 | _ | |a Laurus, Torsten |0 P:(DE-H253)PIP1006959 |b 26 |
700 | 1 | _ | |a Lee, Yongjae |0 P:(DE-H253)PIP1081833 |b 27 |
700 | 1 | _ | |a Li, Xinyang |0 P:(DE-H253)PIP1090582 |b 28 |
700 | 1 | _ | |a Marquardt, Hauke |0 P:(DE-H253)PIP1014167 |b 29 |
700 | 1 | _ | |a Mondal, Anshuman |0 P:(DE-H253)PIP1095213 |b 30 |
700 | 1 | _ | |a Nakatsutsumi, Motoaki |0 P:(DE-H253)PIP1017893 |b 31 |
700 | 1 | _ | |a NINET, Sandra |0 P:(DE-H253)PIP1091810 |b 32 |
700 | 1 | _ | |a Pace, Edward |0 P:(DE-H253)PIP1027395 |b 33 |
700 | 1 | _ | |a Pépin, Charles |0 P:(DE-H253)PIP1084623 |b 34 |
700 | 1 | _ | |a Prescher, Clemens |0 P:(DE-H253)PIP1014506 |b 35 |
700 | 1 | _ | |a Stern, Stephan |0 P:(DE-H253)PIP1011474 |b 36 |
700 | 1 | _ | |a Sztuk-Dambietz, Jolanta |0 P:(DE-H253)PIP1005470 |b 37 |
700 | 1 | _ | |a Zastrau, Ulf |0 P:(DE-H253)PIP1008691 |b 38 |
700 | 1 | _ | |a McMahon, Malcolm |0 P:(DE-H253)PIP1015415 |b 39 |
773 | 1 | 8 | |a 10.1038/s41467-024-52505-0 |b Springer Science and Business Media LLC |d 2024-09-23 |n 1 |p 8256 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-52505-0 |g Vol. 15, no. 1, p. 8256 |0 PERI:(DE-600)2553671-0 |n 1 |p 8256 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612515/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612515/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612515/files/Internal%20review.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/612515/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Article%20Approval%20Service.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Captions%20for%20supplementary%20videos.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%201.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%202.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%203.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%204.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%205.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%206.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%207.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%208.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%209.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Internal%20review.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20Information%20Husband%20Final.pdf |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20video%201.avi |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20video%202.avi |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/612515/files/s41467-024-52505-0.pdf |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Captions%20for%20supplementary%20videos.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%201.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%202.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%203.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%204.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%205.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%206.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%207.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%208.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Fig.%209.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20Information%20Husband%20Final.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/612515/files/s41467-024-52505-0.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:612515 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1016653 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1016653 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1007496 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1007496 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1090734 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1090734 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1021535 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1015299 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1015486 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1087596 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1030952 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1013606 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1017102 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 9 |6 P:(DE-H253)PIP1017102 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1029102 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1019042 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1098592 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 13 |6 P:(DE-H253)PIP1001646 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1009336 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 14 |6 P:(DE-H253)PIP1009336 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 15 |6 P:(DE-H253)PIP1087218 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1087218 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 16 |6 P:(DE-H253)PIP1026094 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-H253)PIP1025558 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 18 |6 P:(DE-H253)PIP1019116 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 18 |6 P:(DE-H253)PIP1019116 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 19 |6 P:(DE-H253)PIP1080452 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 20 |6 P:(DE-H253)PIP1085033 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 20 |6 P:(DE-H253)PIP1085033 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-H253)PIP1015324 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 21 |6 P:(DE-H253)PIP1015324 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 22 |6 P:(DE-H253)PIP1094567 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 23 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 23 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 23 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 24 |6 P:(DE-H253)PIP1080451 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 25 |6 P:(DE-H253)PIP1032202 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 26 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 26 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 26 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 27 |6 P:(DE-H253)PIP1081833 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 27 |6 P:(DE-H253)PIP1081833 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 28 |6 P:(DE-H253)PIP1090582 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 29 |6 P:(DE-H253)PIP1014167 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 30 |6 P:(DE-H253)PIP1095213 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 31 |6 P:(DE-H253)PIP1017893 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 32 |6 P:(DE-H253)PIP1091810 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 32 |6 P:(DE-H253)PIP1091810 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 33 |6 P:(DE-H253)PIP1027395 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 34 |6 P:(DE-H253)PIP1084623 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 34 |6 P:(DE-H253)PIP1084623 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 35 |6 P:(DE-H253)PIP1014506 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 36 |6 P:(DE-H253)PIP1011474 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 36 |6 P:(DE-H253)PIP1011474 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 37 |6 P:(DE-H253)PIP1005470 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 38 |6 P:(DE-H253)PIP1008691 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 39 |6 P:(DE-H253)PIP1015415 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-HIBEF-20240110 |k FS-HIBEF |l FS-PS Fachgruppe HIBEF |x 0 |
920 | 1 | _ | |0 I:(DE-H253)XFEL-User-20170713 |k XFEL-User |l The European XFEL Users |x 1 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_E1_HED-20210408 |k XFEL_E1_HED |l HED |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FS-DS-20120731 |k FS-DS |l FS-Detektor Systeme |x 3 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 4 |
920 | 1 | _ | |0 I:(DE-H253)FS-PET-D-20190712 |k FS-PET-D |l Experimentebetreuung PETRA III |x 5 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-HIBEF-20240110 |
980 | _ | _ | |a I:(DE-H253)XFEL-User-20170713 |
980 | _ | _ | |a I:(DE-H253)XFEL_E1_HED-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-DS-20120731 |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PET-D-20190712 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/310393a0 |9 -- missing cx lookup -- |1 O Mishima |p 393 - |2 Crossref |u Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984). |t Nature |v 310 |y 1984 |
999 | C | 5 | |a 10.1038/314076a0 |9 -- missing cx lookup -- |1 O Mishima |p 76 - |2 Crossref |u Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985). |t Nature |v 314 |y 1985 |
999 | C | 5 | |a 10.1039/c1cp21712g |9 -- missing cx lookup -- |1 CG Salzmann |p 18468 - |2 Crossref |u Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011). |t Phys. Chem. Chem. Phys. |v 13 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.52.1312 |9 -- missing cx lookup -- |1 A Polian |p 1312 - |2 Crossref |u Polian, A. & Grimsditch, M. New high-pressure phase of H2O: Ice X. Phys. Rev. Lett. 52, 1312–1314 (1984). |t Phys. Rev. Lett. |v 52 |y 1984 |
999 | C | 5 | |a 10.1038/365327a0 |9 -- missing cx lookup -- |1 J Li |p 327 - |2 Crossref |u Li, J. & Ross, D. K. Evidence for two kinds of hydrogen bond in ice. Nature 365, 327–329 (1993). |t Nature |v 365 |y 1993 |
999 | C | 5 | |a 10.1103/PhysRevLett.94.125508 |9 -- missing cx lookup -- |1 AF Goncharov |p 125508 - |2 Crossref |u Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005). |t Phys. Rev. Lett. |v 94 |y 2005 |
999 | C | 5 | |a 10.1063/1.448109 |9 -- missing cx lookup -- |1 WF Kuhs |p 3612 - |2 Crossref |u Kuhs, W. F., Finney, J. L., Vettier, C. & Bliss, D. V. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J. Chem. Phys. 81, 3612–3623 (1984). |t J. Chem. Phys. |v 81 |y 1984 |
999 | C | 5 | |a 10.1021/jp9632551 |9 -- missing cx lookup -- |1 SM Jackson |p 6142 - |2 Crossref |u Jackson, S. M., Nield, V. M., Whitworth, R. W., Oguro, M. & Wilson, C. C. Single-crystal neutron diffraction studies of the structure of ice XI. J. Phys. Chem. B 101, 6142–6145 (1997). |t J. Phys. Chem. B |v 101 |y 1997 |
999 | C | 5 | |a 10.1103/PhysRevLett.89.145501 |9 -- missing cx lookup -- |1 M Benoit |p 145501 - |2 Crossref |u Benoit, M., Romero, A. H. & Marx, D. Reassigning hydrogen-bond centering in dense ice. Phys. Rev. Lett. 89, 145501 (2002). |t Phys. Rev. Lett. |v 89 |y 2002 |
999 | C | 5 | |a 10.1029/2021GL092514 |1 W Shi |9 -- missing cx lookup -- |2 Crossref |u Shi, W. et al. Single-crystal elasticity of high-pressure ice up to 98 GPa by Brillouin Scattering. Geophys. Res. Lett. 48, e2021GL092514 (2021). |t Geophys. Res. Lett. |v 48 |y 2021 |
999 | C | 5 | |a 10.1038/s41567-017-0017-4 |9 -- missing cx lookup -- |1 M Millot |p 297 - |2 Crossref |u Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018). |t Nat. Phys. |v 14 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.128.165701 |9 -- missing cx lookup -- |1 G Weck |p 165701 - |2 Crossref |u Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022). |t Phys. Rev. Lett. |v 128 |y 2022 |
999 | C | 5 | |a 10.1038/s41567-021-01351-8 |9 -- missing cx lookup -- |1 VB Prakapenka |p 1233 - |2 Crossref |u Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021). |t Nat. Phys. |v 17 |y 2021 |
999 | C | 5 | |a 10.1038/s41586-019-1114-6 |9 -- missing cx lookup -- |1 M Millot |p 251 - |2 Crossref |u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019). |t Nature |v 569 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.125.195501 |9 -- missing cx lookup -- |1 J-A Queyroux |p 195501 - |2 Crossref |u Queyroux, J.-A. et al. Melting curve and isostructural solid transition in superionic ice. Phys. Rev. Lett. 125, 195501 (2020). |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.1126/science.214.4517.145 |9 -- missing cx lookup -- |1 WB Hubbard |p 145 - |2 Crossref |u Hubbard, W. B. Interiors of the giant planets. Science 214, 145–149 (1981). |t Science |v 214 |y 1981 |
999 | C | 5 | |a 10.1029/JB085iB01p00225 |9 -- missing cx lookup -- |1 WB Hubbard |p 225 - |2 Crossref |u Hubbard, W. B. & MacFarlane, J. J. Structure and evolution of Uranus and Neptune. J. Geophys. Res.: Solid Earth 85, 225–234 (1980). |t J. Geophys. Res.: Solid Earth |v 85 |y 1980 |
999 | C | 5 | |a 10.1016/j.icarus.2010.08.008 |9 -- missing cx lookup -- |1 R Redmer |p 798 - |2 Crossref |u Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011). |t Icarus |v 211 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.60.2284 |9 -- missing cx lookup -- |1 P Demontis |p 2284 - |2 Crossref |u Demontis, P., LeSar, R. & Klein, M. L. New high-pressure phases of ice. Phys. Rev. Lett. 60, 2284–2287 (1988). |t Phys. Rev. Lett. |v 60 |y 1988 |
999 | C | 5 | |a 10.1126/science.283.5398.44 |9 -- missing cx lookup -- |1 C Cavazzoni |p 44 - |2 Crossref |u Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999). |t Science |v 283 |y 1999 |
999 | C | 5 | |a 10.1073/pnas.0808137105 |9 -- missing cx lookup -- |1 E Schwegler |p 14779 - |2 Crossref |u Schwegler, E., Sharma, M., Gygi, F. & Galli, G. Melting of ice under pressure. Proc. Natl Acad. Sci. USA 105, 14779–14783 (2008). |t Proc. Natl Acad. Sci. USA |v 105 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.94.217801 |9 -- missing cx lookup -- |1 N Goldman |p 217801 - |2 Crossref |u Goldman, N., Fried, L. E., Kuo, I.-F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005). |t Phys. Rev. Lett. |v 94 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.151102 |9 -- missing cx lookup -- |1 HF Wilson |p 151102 - |2 Crossref |u Wilson, H. F., Wong, M. L. & Militzer, B. Superionic to superionic phase change in water: consequences for the interiors of uranus and neptune. Phys. Rev. Lett. 110, 151102 (2013). |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevE.93.022140 |9 -- missing cx lookup -- |1 M French |p 022140 - |2 Crossref |u French, M., Desjarlais, M. P. & Redmer, R. Ab initio calculation of thermodynamic potentials and entropies for superionic water. Phys. Rev. E 93, 022140 (2016). |t Phys. Rev. E |v 93 |y 2016 |
999 | C | 5 | |a 10.1038/ncomms9156 |1 J Sun |9 -- missing cx lookup -- |2 Crossref |u Sun, J., Clark, B. K., Torquato, S. & Car, R. The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015). |t Nat. Commun. |v 6 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-022-32374-1 |1 A Reinhardt |9 -- missing cx lookup -- |2 Crossref |u Reinhardt, A. et al. Thermodynamics of high-pressure ice phases explored with atomistic simulations. Nat. Commun. 13, 4707 (2022). |t Nat. Commun. |v 13 |y 2022 |
999 | C | 5 | |a 10.1134/1.559145 |9 -- missing cx lookup -- |1 VV Yakushev |p 617 - |2 Crossref |u Yakushev, V. V., Postnov, V. I., Fortov, V. E. & Yakysheva, T. I. Electrical conductivity of water during quasi-isentropic compression to 130 GPa. J. Exp. Theor. Phys. 90, 617–622 (2000). |t J. Exp. Theor. Phys. |v 90 |y 2000 |
999 | C | 5 | |a 10.1063/1.1332079 |9 -- missing cx lookup -- |1 R Chau |p 1361 - |2 Crossref |u Chau, R., Mitchell, A. C., Minich, R. W. & Nellis, W. J. Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). J. Chem. Phys. 114, 1361–1365 (2001). |t J. Chem. Phys. |v 114 |y 2001 |
999 | C | 5 | |a 10.1038/s41598-021-04687-6 |1 AE Gleason |9 -- missing cx lookup -- |2 Crossref |u Gleason, A. E. et al. Dynamic compression of water to conditions in ice giant interiors. Sci. Rep. 12, 715 (2022). |t Sci. Rep. |v 12 |y 2022 |
999 | C | 5 | |a 10.3390/cryst10060459 |9 -- missing cx lookup -- |1 S Anzellini |p 459 - |2 Crossref |u Anzellini, S. & Boccato, S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals 10, 459 (2020). |t Crystals |v 10 |y 2020 |
999 | C | 5 | |a 10.1063/5.0021156 |9 -- missing cx lookup -- |2 Crossref |u Childs, C., O’Donnell, W., Ellison, P. B., Shelton, D. P. & Salamat, A. Optical and electronic solutions for power stabilization of CO2 lasers. Rev. Sci. Instrum. 91, 103003 (2020). |
999 | C | 5 | |a 10.1063/5.0137943 |9 -- missing cx lookup -- |1 T Kimura |p 134504 - |2 Crossref |u Kimura, T. & Murakami, M. Revisiting the melting curve of H2O by Brillouin spectroscopy to 54 GPa. J. Chem. Phys. 158, 134504 (2023). |t J. Chem. Phys. |v 158 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.049601 |9 -- missing cx lookup -- |1 AF Goncharov |p 049601 - |2 Crossref |u Goncharov, A. F. & Prakapenka, V. B. Comment on “evidence and stability field of fcc superionic water ice using static compression”. Phys. Rev. Lett. 131, 049601 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.049602 |9 -- missing cx lookup -- |1 G Weck |p 049602 - |2 Crossref |u Weck, G. et al. Weck et al. Reply. Phys. Rev. Lett. 131, 049602 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
999 | C | 5 | |a 10.1063/1.4766816 |1 E Sugimura |9 -- missing cx lookup -- |2 Crossref |u Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012). |t J. Chem. Phys. |v 137 |y 2012 |
999 | C | 5 | |a 10.1107/S1600577521002551 |9 -- missing cx lookup -- |1 HP Liermann |p 688 - |2 Crossref |u Liermann, H. P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Rad. 28, 688–706 (2021). |t J. Synchrotron Rad. |v 28 |y 2021 |
999 | C | 5 | |a 10.1021/acs.jpclett.1c00150 |9 -- missing cx lookup -- |1 H Hwang |p 3246 - |2 Crossref |u Hwang, H. et al. X-ray free electron laser-induced synthesis of ε-iron nitride at high pressures. J. Phys. Chem. Lett. 12, 3246–3252 (2021). |t J. Phys. Chem. Lett. |v 12 |y 2021 |
999 | C | 5 | |a 10.1038/s43246-021-00158-7 |9 -- missing cx lookup -- |1 RJ Husband |p 1 - |2 Crossref |u Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 1–9 (2021). |t Commun. Mater. |v 2 |y 2021 |
999 | C | 5 | |a 10.1016/j.nima.2019.06.065 |9 -- missing cx lookup -- |1 A Allahgholi |p 162324 - |2 Crossref |u Allahgholi, A. et al. Megapixels @ megahertz – the AGIPD high-speed cameras for the European XFEL. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 942, 162324 (2019). |t Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. |v 942 |y 2019 |
999 | C | 5 | |a 10.1063/1.5141360 |9 -- missing cx lookup -- |1 J Meza-Galvez |p 195902 - |2 Crossref |u Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation. J. Appl. Phys. 127, 195902 (2020). |t J. Appl. Phys. |v 127 |y 2020 |
999 | C | 5 | |a 10.1038/s41550-023-02147-x |9 -- missing cx lookup -- |1 M Frost |p 174 - |2 Crossref |u Frost, M. et al. Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions. Nat. Astron. 8, 174–181 (2024). |t Nat. Astron. |v 8 |y 2024 |
999 | C | 5 | |a 10.1063/1.3253100 |9 -- missing cx lookup -- |1 CY Ho |p 279 - |2 Crossref |u Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972). |t J. Phys. Chem. Ref. Data |v 1 |y 1972 |
999 | C | 5 | |a 10.1038/s41567-021-01334-9 |9 -- missing cx lookup -- |1 B Cheng |p 1228 - |2 Crossref |u Cheng, B., Bethkenhagen, M., Pickard, C. J. & Hamel, S. Phase behaviours of superionic water at planetary conditions. Nat. Phys. 17, 1228–1232 (2021). |t Nat. Phys. |v 17 |y 2021 |
999 | C | 5 | |a 10.1107/S1600577521007335 |9 -- missing cx lookup -- |1 U Zastrau |p 1393 - |2 Crossref |u Zastrau, U. et al. The high energy density scientific instrument at the european XFEL. J. Synchrotron Rad. 28, 1393–1416 (2021). |t J. Synchrotron Rad. |v 28 |y 2021 |
999 | C | 5 | |a 10.1063/5.0019935 |1 N Kujala |9 -- missing cx lookup -- |2 Crossref |u Kujala, N. et al. Hard x-ray single-shot spectrometer at the European X-ray Free-Electron Laser. Rev. Sci. Instrum. 91, 103101 (2020). |t Rev. Sci. Instrum. |v 91 |y 2020 |
999 | C | 5 | |a 10.1080/08957959.2015.1059835 |9 -- missing cx lookup -- |1 C Prescher |p 223 - |2 Crossref |u Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High. Press. Res. 35, 223–230 (2015). |t High. Press. Res. |v 35 |y 2015 |
999 | C | 5 | |a 10.1107/S1600576716000455 |9 -- missing cx lookup -- |1 AP Hammersley |p 646 - |2 Crossref |u Hammersley, A. P. FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl Cryst. 49, 646–652 (2016). |t J. Appl Cryst. |v 49 |y 2016 |
999 | C | 5 | |a 10.1063/5.0142196 |1 OB Ball |9 -- missing cx lookup -- |2 Crossref |u Ball, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and x-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023). |t J. Appl. Phys. |v 134 |y 2023 |
999 | C | 5 | |a 10.1080/08957950802050718 |9 -- missing cx lookup -- |1 VB Prakapenka |p 225 - |2 Crossref |u Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High. Press. Res. 28, 225–235 (2008). |t High. Press. Res. |v 28 |y 2008 |
999 | C | 5 | |a 10.1088/1361-648X/ac8134 |9 -- missing cx lookup -- |1 M Kim |p 394001 - |2 Crossref |u Kim, M. et al. Evidence for superionic H2O and diffusive He–H2O at high temperature and high pressure. J. Phys. Condens. Matter 34, 394001 (2022). |t J. Phys. Condens. Matter |v 34 |y 2022 |
999 | C | 5 | |a 10.1016/j.gca.2003.12.007 |9 -- missing cx lookup -- |1 MR Frank |p 2781 - |2 Crossref |u Frank, M. R., Fei, Y. & Hu, J. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of Ice VII1 1Associate editor: D. Sverjensky. Geochim. Cosmochim. Acta 68, 2781–2790 (2004). |t Geochim. Cosmochim. Acta |v 68 |y 2004 |
999 | C | 5 | |a 10.1038/330737a0 |9 -- missing cx lookup -- |1 RJ Hemley |p 737 - |2 Crossref |u Hemley, R. J. et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987). |t Nature |v 330 |y 1987 |
999 | C | 5 | |a 10.1063/1.3100771 |1 AF Goncharov |9 -- missing cx lookup -- |2 Crossref |u Goncharov, A. F. et al. Dissociative melting of ice VII at high pressure. J. Chem. Phys. 130, 124514 (2009). |t J. Chem. Phys. |v 130 |y 2009 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|