001     612515
005     20250804171611.0
024 7 _ |a 10.1038/s41467-024-52505-0
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05368
|2 datacite_doi
024 7 _ |a altmetric:168171815
|2 altmetric
024 7 _ |a pmid:39313509
|2 pmid
024 7 _ |a WOS:001320768800004
|2 WOS
024 7 _ |2 openalex
|a openalex:W4402748065
037 _ _ |a PUBDB-2024-05368
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Husband, Rachel
|0 P:(DE-H253)PIP1016653
|b 0
|e Corresponding author
245 _ _ |a Phase transition kinetics of superionic $H_2O$ ice phases revealed by MHz XFEL heating experiments
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734079969_1158399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a We acknowledge support from the Deutsche For-schungsgemeinschaft (DFG) Research Unit FOR 2440 grants SA2585/5-1 (R.J.H, A.M., C.S.V., and H.P.L) and AP262/2-2 (K.A.).
520 _ _ |a H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in these runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project 280637173 - FOR 2440: Materie im Inneren von Planeten - Hochdruck-, Planeten- und Plasmaphysik (280637173)
|0 G:(GEPRIS)280637173
|c 280637173
|x 2
542 _ _ |i 2024-09-23
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-09-23
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e HED: High-Density matter Experiments
|f SASE2
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-HED-20150101
|5 EXP:(DE-H253)XFEL-HED-20150101
|6 EXP:(DE-H253)XFEL-SASE2-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 1
700 1 _ |a Liermann, Hanns-Peter
|0 P:(DE-H253)PIP1007496
|b 1
700 1 _ |a McHardy, James
|0 P:(DE-H253)PIP1090734
|b 2
700 1 _ |a Mcwilliams, Ryan Stewart
|0 P:(DE-H253)PIP1021535
|b 3
700 1 _ |a Goncharov, Alexander
|0 P:(DE-H253)PIP1015299
|b 4
700 1 _ |a Prakapenka, Vitali
|0 P:(DE-H253)PIP1015486
|b 5
700 1 _ |a Edmund, Eric
|0 P:(DE-H253)PIP1087596
|b 6
700 1 _ |a Chariton, Stella
|0 P:(DE-H253)PIP1030952
|b 7
700 1 _ |a Konopkova, Zuzana
|0 P:(DE-H253)PIP1013606
|b 8
700 1 _ |a Strohm, Cornelius
|0 P:(DE-H253)PIP1017102
|b 9
700 1 _ |a Sanchez-Valle, Carmen
|0 P:(DE-H253)PIP1029102
|b 10
700 1 _ |a Frost, Mungo
|0 P:(DE-H253)PIP1019042
|b 11
700 1 _ |a Andriambariarijaona, Leon
|0 P:(DE-H253)PIP1098592
|b 12
700 1 _ |a Appel, Karen
|0 P:(DE-H253)PIP1001646
|b 13
700 1 _ |a Baehtz, Carsten
|0 P:(DE-H253)PIP1009336
|b 14
700 1 _ |a Ball, Orianna
|0 P:(DE-H253)PIP1087218
|b 15
700 1 _ |a Briggs, Richard
|0 P:(DE-H253)PIP1026094
|b 16
700 1 _ |a Buchen, Johannes
|0 P:(DE-H253)PIP1025558
|b 17
700 1 _ |a Cerantola, Valerio
|0 P:(DE-H253)PIP1019116
|b 18
700 1 _ |a Choi, Jinhyuk
|0 P:(DE-H253)PIP1080452
|b 19
700 1 _ |a Coleman, Amy
|0 P:(DE-H253)PIP1085033
|b 20
700 1 _ |a CYNN, HYUNCHAE
|0 P:(DE-H253)PIP1015324
|b 21
700 1 _ |a Dwivedi, Anand
|0 P:(DE-H253)PIP1094567
|b 22
700 1 _ |a Graafsma, Heinz
|0 P:(DE-H253)PIP1005340
|b 23
700 1 _ |a Hwang, Huijeong
|0 P:(DE-H253)PIP1080451
|b 24
700 1 _ |a Koemets, Egor
|0 P:(DE-H253)PIP1032202
|b 25
700 1 _ |a Laurus, Torsten
|0 P:(DE-H253)PIP1006959
|b 26
700 1 _ |a Lee, Yongjae
|0 P:(DE-H253)PIP1081833
|b 27
700 1 _ |a Li, Xinyang
|0 P:(DE-H253)PIP1090582
|b 28
700 1 _ |a Marquardt, Hauke
|0 P:(DE-H253)PIP1014167
|b 29
700 1 _ |a Mondal, Anshuman
|0 P:(DE-H253)PIP1095213
|b 30
700 1 _ |a Nakatsutsumi, Motoaki
|0 P:(DE-H253)PIP1017893
|b 31
700 1 _ |a NINET, Sandra
|0 P:(DE-H253)PIP1091810
|b 32
700 1 _ |a Pace, Edward
|0 P:(DE-H253)PIP1027395
|b 33
700 1 _ |a Pépin, Charles
|0 P:(DE-H253)PIP1084623
|b 34
700 1 _ |a Prescher, Clemens
|0 P:(DE-H253)PIP1014506
|b 35
700 1 _ |a Stern, Stephan
|0 P:(DE-H253)PIP1011474
|b 36
700 1 _ |a Sztuk-Dambietz, Jolanta
|0 P:(DE-H253)PIP1005470
|b 37
700 1 _ |a Zastrau, Ulf
|0 P:(DE-H253)PIP1008691
|b 38
700 1 _ |a McMahon, Malcolm
|0 P:(DE-H253)PIP1015415
|b 39
773 1 8 |a 10.1038/s41467-024-52505-0
|b Springer Science and Business Media LLC
|d 2024-09-23
|n 1
|p 8256
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-52505-0
|g Vol. 15, no. 1, p. 8256
|0 PERI:(DE-600)2553671-0
|n 1
|p 8256
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://bib-pubdb1.desy.de/record/612515/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612515/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/612515/files/Internal%20review.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/612515/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Captions%20for%20supplementary%20videos.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%201.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%202.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%203.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%204.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%205.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%206.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%207.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%208.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%209.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Internal%20review.pdf?subformat=pdfa
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20Information%20Husband%20Final.pdf
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20video%201.avi
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20video%202.avi
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/612515/files/s41467-024-52505-0.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Captions%20for%20supplementary%20videos.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%201.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%202.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%203.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%204.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%205.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%206.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%207.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%208.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Fig.%209.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/Supplementary%20Information%20Husband%20Final.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/612515/files/s41467-024-52505-0.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:612515
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1016653
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1016653
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1090734
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1090734
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1021535
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1015299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1015486
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1087596
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1030952
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1013606
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1017102
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1017102
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1029102
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1019042
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1098592
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1001646
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1009336
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 14
|6 P:(DE-H253)PIP1009336
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1087218
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1087218
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1026094
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1025558
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 18
|6 P:(DE-H253)PIP1019116
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 18
|6 P:(DE-H253)PIP1019116
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1080452
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1085033
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 20
|6 P:(DE-H253)PIP1085033
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1015324
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 21
|6 P:(DE-H253)PIP1015324
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 22
|6 P:(DE-H253)PIP1094567
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 23
|6 P:(DE-H253)PIP1005340
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 23
|6 P:(DE-H253)PIP1005340
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 23
|6 P:(DE-H253)PIP1005340
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 24
|6 P:(DE-H253)PIP1080451
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 P:(DE-H253)PIP1032202
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 26
|6 P:(DE-H253)PIP1006959
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 26
|6 P:(DE-H253)PIP1006959
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 26
|6 P:(DE-H253)PIP1006959
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 27
|6 P:(DE-H253)PIP1081833
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 P:(DE-H253)PIP1081833
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1090582
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 29
|6 P:(DE-H253)PIP1014167
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 30
|6 P:(DE-H253)PIP1095213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 31
|6 P:(DE-H253)PIP1017893
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 32
|6 P:(DE-H253)PIP1091810
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 32
|6 P:(DE-H253)PIP1091810
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 P:(DE-H253)PIP1027395
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-H253)PIP1084623
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 34
|6 P:(DE-H253)PIP1084623
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 35
|6 P:(DE-H253)PIP1014506
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 36
|6 P:(DE-H253)PIP1011474
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 36
|6 P:(DE-H253)PIP1011474
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 37
|6 P:(DE-H253)PIP1005470
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 38
|6 P:(DE-H253)PIP1008691
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 39
|6 P:(DE-H253)PIP1015415
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-HIBEF-20240110
|k FS-HIBEF
|l FS-PS Fachgruppe HIBEF
|x 0
920 1 _ |0 I:(DE-H253)XFEL-User-20170713
|k XFEL-User
|l The European XFEL Users
|x 1
920 1 _ |0 I:(DE-H253)XFEL_E1_HED-20210408
|k XFEL_E1_HED
|l HED
|x 2
920 1 _ |0 I:(DE-H253)FS-DS-20120731
|k FS-DS
|l FS-Detektor Systeme
|x 3
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 4
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-HIBEF-20240110
980 _ _ |a I:(DE-H253)XFEL-User-20170713
980 _ _ |a I:(DE-H253)XFEL_E1_HED-20210408
980 _ _ |a I:(DE-H253)FS-DS-20120731
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1038/310393a0
|9 -- missing cx lookup --
|1 O Mishima
|p 393 -
|2 Crossref
|u Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).
|t Nature
|v 310
|y 1984
999 C 5 |a 10.1038/314076a0
|9 -- missing cx lookup --
|1 O Mishima
|p 76 -
|2 Crossref
|u Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).
|t Nature
|v 314
|y 1985
999 C 5 |a 10.1039/c1cp21712g
|9 -- missing cx lookup --
|1 CG Salzmann
|p 18468 -
|2 Crossref
|u Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).
|t Phys. Chem. Chem. Phys.
|v 13
|y 2011
999 C 5 |a 10.1103/PhysRevLett.52.1312
|9 -- missing cx lookup --
|1 A Polian
|p 1312 -
|2 Crossref
|u Polian, A. & Grimsditch, M. New high-pressure phase of H2O: Ice X. Phys. Rev. Lett. 52, 1312–1314 (1984).
|t Phys. Rev. Lett.
|v 52
|y 1984
999 C 5 |a 10.1038/365327a0
|9 -- missing cx lookup --
|1 J Li
|p 327 -
|2 Crossref
|u Li, J. & Ross, D. K. Evidence for two kinds of hydrogen bond in ice. Nature 365, 327–329 (1993).
|t Nature
|v 365
|y 1993
999 C 5 |a 10.1103/PhysRevLett.94.125508
|9 -- missing cx lookup --
|1 AF Goncharov
|p 125508 -
|2 Crossref
|u Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).
|t Phys. Rev. Lett.
|v 94
|y 2005
999 C 5 |a 10.1063/1.448109
|9 -- missing cx lookup --
|1 WF Kuhs
|p 3612 -
|2 Crossref
|u Kuhs, W. F., Finney, J. L., Vettier, C. & Bliss, D. V. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J. Chem. Phys. 81, 3612–3623 (1984).
|t J. Chem. Phys.
|v 81
|y 1984
999 C 5 |a 10.1021/jp9632551
|9 -- missing cx lookup --
|1 SM Jackson
|p 6142 -
|2 Crossref
|u Jackson, S. M., Nield, V. M., Whitworth, R. W., Oguro, M. & Wilson, C. C. Single-crystal neutron diffraction studies of the structure of ice XI. J. Phys. Chem. B 101, 6142–6145 (1997).
|t J. Phys. Chem. B
|v 101
|y 1997
999 C 5 |a 10.1103/PhysRevLett.89.145501
|9 -- missing cx lookup --
|1 M Benoit
|p 145501 -
|2 Crossref
|u Benoit, M., Romero, A. H. & Marx, D. Reassigning hydrogen-bond centering in dense ice. Phys. Rev. Lett. 89, 145501 (2002).
|t Phys. Rev. Lett.
|v 89
|y 2002
999 C 5 |a 10.1029/2021GL092514
|1 W Shi
|9 -- missing cx lookup --
|2 Crossref
|u Shi, W. et al. Single-crystal elasticity of high-pressure ice up to 98 GPa by Brillouin Scattering. Geophys. Res. Lett. 48, e2021GL092514 (2021).
|t Geophys. Res. Lett.
|v 48
|y 2021
999 C 5 |a 10.1038/s41567-017-0017-4
|9 -- missing cx lookup --
|1 M Millot
|p 297 -
|2 Crossref
|u Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).
|t Nat. Phys.
|v 14
|y 2018
999 C 5 |a 10.1103/PhysRevLett.128.165701
|9 -- missing cx lookup --
|1 G Weck
|p 165701 -
|2 Crossref
|u Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1038/s41567-021-01351-8
|9 -- missing cx lookup --
|1 VB Prakapenka
|p 1233 -
|2 Crossref
|u Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021).
|t Nat. Phys.
|v 17
|y 2021
999 C 5 |a 10.1038/s41586-019-1114-6
|9 -- missing cx lookup --
|1 M Millot
|p 251 -
|2 Crossref
|u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).
|t Nature
|v 569
|y 2019
999 C 5 |a 10.1103/PhysRevLett.125.195501
|9 -- missing cx lookup --
|1 J-A Queyroux
|p 195501 -
|2 Crossref
|u Queyroux, J.-A. et al. Melting curve and isostructural solid transition in superionic ice. Phys. Rev. Lett. 125, 195501 (2020).
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1126/science.214.4517.145
|9 -- missing cx lookup --
|1 WB Hubbard
|p 145 -
|2 Crossref
|u Hubbard, W. B. Interiors of the giant planets. Science 214, 145–149 (1981).
|t Science
|v 214
|y 1981
999 C 5 |a 10.1029/JB085iB01p00225
|9 -- missing cx lookup --
|1 WB Hubbard
|p 225 -
|2 Crossref
|u Hubbard, W. B. & MacFarlane, J. J. Structure and evolution of Uranus and Neptune. J. Geophys. Res.: Solid Earth 85, 225–234 (1980).
|t J. Geophys. Res.: Solid Earth
|v 85
|y 1980
999 C 5 |a 10.1016/j.icarus.2010.08.008
|9 -- missing cx lookup --
|1 R Redmer
|p 798 -
|2 Crossref
|u Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).
|t Icarus
|v 211
|y 2011
999 C 5 |a 10.1103/PhysRevLett.60.2284
|9 -- missing cx lookup --
|1 P Demontis
|p 2284 -
|2 Crossref
|u Demontis, P., LeSar, R. & Klein, M. L. New high-pressure phases of ice. Phys. Rev. Lett. 60, 2284–2287 (1988).
|t Phys. Rev. Lett.
|v 60
|y 1988
999 C 5 |a 10.1126/science.283.5398.44
|9 -- missing cx lookup --
|1 C Cavazzoni
|p 44 -
|2 Crossref
|u Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).
|t Science
|v 283
|y 1999
999 C 5 |a 10.1073/pnas.0808137105
|9 -- missing cx lookup --
|1 E Schwegler
|p 14779 -
|2 Crossref
|u Schwegler, E., Sharma, M., Gygi, F. & Galli, G. Melting of ice under pressure. Proc. Natl Acad. Sci. USA 105, 14779–14783 (2008).
|t Proc. Natl Acad. Sci. USA
|v 105
|y 2008
999 C 5 |a 10.1103/PhysRevLett.94.217801
|9 -- missing cx lookup --
|1 N Goldman
|p 217801 -
|2 Crossref
|u Goldman, N., Fried, L. E., Kuo, I.-F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005).
|t Phys. Rev. Lett.
|v 94
|y 2005
999 C 5 |a 10.1103/PhysRevLett.110.151102
|9 -- missing cx lookup --
|1 HF Wilson
|p 151102 -
|2 Crossref
|u Wilson, H. F., Wong, M. L. & Militzer, B. Superionic to superionic phase change in water: consequences for the interiors of uranus and neptune. Phys. Rev. Lett. 110, 151102 (2013).
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/PhysRevE.93.022140
|9 -- missing cx lookup --
|1 M French
|p 022140 -
|2 Crossref
|u French, M., Desjarlais, M. P. & Redmer, R. Ab initio calculation of thermodynamic potentials and entropies for superionic water. Phys. Rev. E 93, 022140 (2016).
|t Phys. Rev. E
|v 93
|y 2016
999 C 5 |a 10.1038/ncomms9156
|1 J Sun
|9 -- missing cx lookup --
|2 Crossref
|u Sun, J., Clark, B. K., Torquato, S. & Car, R. The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1038/s41467-022-32374-1
|1 A Reinhardt
|9 -- missing cx lookup --
|2 Crossref
|u Reinhardt, A. et al. Thermodynamics of high-pressure ice phases explored with atomistic simulations. Nat. Commun. 13, 4707 (2022).
|t Nat. Commun.
|v 13
|y 2022
999 C 5 |a 10.1134/1.559145
|9 -- missing cx lookup --
|1 VV Yakushev
|p 617 -
|2 Crossref
|u Yakushev, V. V., Postnov, V. I., Fortov, V. E. & Yakysheva, T. I. Electrical conductivity of water during quasi-isentropic compression to 130 GPa. J. Exp. Theor. Phys. 90, 617–622 (2000).
|t J. Exp. Theor. Phys.
|v 90
|y 2000
999 C 5 |a 10.1063/1.1332079
|9 -- missing cx lookup --
|1 R Chau
|p 1361 -
|2 Crossref
|u Chau, R., Mitchell, A. C., Minich, R. W. & Nellis, W. J. Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). J. Chem. Phys. 114, 1361–1365 (2001).
|t J. Chem. Phys.
|v 114
|y 2001
999 C 5 |a 10.1038/s41598-021-04687-6
|1 AE Gleason
|9 -- missing cx lookup --
|2 Crossref
|u Gleason, A. E. et al. Dynamic compression of water to conditions in ice giant interiors. Sci. Rep. 12, 715 (2022).
|t Sci. Rep.
|v 12
|y 2022
999 C 5 |a 10.3390/cryst10060459
|9 -- missing cx lookup --
|1 S Anzellini
|p 459 -
|2 Crossref
|u Anzellini, S. & Boccato, S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals 10, 459 (2020).
|t Crystals
|v 10
|y 2020
999 C 5 |a 10.1063/5.0021156
|9 -- missing cx lookup --
|2 Crossref
|u Childs, C., O’Donnell, W., Ellison, P. B., Shelton, D. P. & Salamat, A. Optical and electronic solutions for power stabilization of CO2 lasers. Rev. Sci. Instrum. 91, 103003 (2020).
999 C 5 |a 10.1063/5.0137943
|9 -- missing cx lookup --
|1 T Kimura
|p 134504 -
|2 Crossref
|u Kimura, T. & Murakami, M. Revisiting the melting curve of H2O by Brillouin spectroscopy to 54 GPa. J. Chem. Phys. 158, 134504 (2023).
|t J. Chem. Phys.
|v 158
|y 2023
999 C 5 |a 10.1103/PhysRevLett.131.049601
|9 -- missing cx lookup --
|1 AF Goncharov
|p 049601 -
|2 Crossref
|u Goncharov, A. F. & Prakapenka, V. B. Comment on “evidence and stability field of fcc superionic water ice using static compression”. Phys. Rev. Lett. 131, 049601 (2023).
|t Phys. Rev. Lett.
|v 131
|y 2023
999 C 5 |a 10.1103/PhysRevLett.131.049602
|9 -- missing cx lookup --
|1 G Weck
|p 049602 -
|2 Crossref
|u Weck, G. et al. Weck et al. Reply. Phys. Rev. Lett. 131, 049602 (2023).
|t Phys. Rev. Lett.
|v 131
|y 2023
999 C 5 |a 10.1063/1.4766816
|1 E Sugimura
|9 -- missing cx lookup --
|2 Crossref
|u Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).
|t J. Chem. Phys.
|v 137
|y 2012
999 C 5 |a 10.1107/S1600577521002551
|9 -- missing cx lookup --
|1 HP Liermann
|p 688 -
|2 Crossref
|u Liermann, H. P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Rad. 28, 688–706 (2021).
|t J. Synchrotron Rad.
|v 28
|y 2021
999 C 5 |a 10.1021/acs.jpclett.1c00150
|9 -- missing cx lookup --
|1 H Hwang
|p 3246 -
|2 Crossref
|u Hwang, H. et al. X-ray free electron laser-induced synthesis of ε-iron nitride at high pressures. J. Phys. Chem. Lett. 12, 3246–3252 (2021).
|t J. Phys. Chem. Lett.
|v 12
|y 2021
999 C 5 |a 10.1038/s43246-021-00158-7
|9 -- missing cx lookup --
|1 RJ Husband
|p 1 -
|2 Crossref
|u Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 1–9 (2021).
|t Commun. Mater.
|v 2
|y 2021
999 C 5 |a 10.1016/j.nima.2019.06.065
|9 -- missing cx lookup --
|1 A Allahgholi
|p 162324 -
|2 Crossref
|u Allahgholi, A. et al. Megapixels @ megahertz – the AGIPD high-speed cameras for the European XFEL. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 942, 162324 (2019).
|t Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip.
|v 942
|y 2019
999 C 5 |a 10.1063/1.5141360
|9 -- missing cx lookup --
|1 J Meza-Galvez
|p 195902 -
|2 Crossref
|u Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation. J. Appl. Phys. 127, 195902 (2020).
|t J. Appl. Phys.
|v 127
|y 2020
999 C 5 |a 10.1038/s41550-023-02147-x
|9 -- missing cx lookup --
|1 M Frost
|p 174 -
|2 Crossref
|u Frost, M. et al. Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions. Nat. Astron. 8, 174–181 (2024).
|t Nat. Astron.
|v 8
|y 2024
999 C 5 |a 10.1063/1.3253100
|9 -- missing cx lookup --
|1 CY Ho
|p 279 -
|2 Crossref
|u Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972).
|t J. Phys. Chem. Ref. Data
|v 1
|y 1972
999 C 5 |a 10.1038/s41567-021-01334-9
|9 -- missing cx lookup --
|1 B Cheng
|p 1228 -
|2 Crossref
|u Cheng, B., Bethkenhagen, M., Pickard, C. J. & Hamel, S. Phase behaviours of superionic water at planetary conditions. Nat. Phys. 17, 1228–1232 (2021).
|t Nat. Phys.
|v 17
|y 2021
999 C 5 |a 10.1107/S1600577521007335
|9 -- missing cx lookup --
|1 U Zastrau
|p 1393 -
|2 Crossref
|u Zastrau, U. et al. The high energy density scientific instrument at the european XFEL. J. Synchrotron Rad. 28, 1393–1416 (2021).
|t J. Synchrotron Rad.
|v 28
|y 2021
999 C 5 |a 10.1063/5.0019935
|1 N Kujala
|9 -- missing cx lookup --
|2 Crossref
|u Kujala, N. et al. Hard x-ray single-shot spectrometer at the European X-ray Free-Electron Laser. Rev. Sci. Instrum. 91, 103101 (2020).
|t Rev. Sci. Instrum.
|v 91
|y 2020
999 C 5 |a 10.1080/08957959.2015.1059835
|9 -- missing cx lookup --
|1 C Prescher
|p 223 -
|2 Crossref
|u Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High. Press. Res. 35, 223–230 (2015).
|t High. Press. Res.
|v 35
|y 2015
999 C 5 |a 10.1107/S1600576716000455
|9 -- missing cx lookup --
|1 AP Hammersley
|p 646 -
|2 Crossref
|u Hammersley, A. P. FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl Cryst. 49, 646–652 (2016).
|t J. Appl Cryst.
|v 49
|y 2016
999 C 5 |a 10.1063/5.0142196
|1 OB Ball
|9 -- missing cx lookup --
|2 Crossref
|u Ball, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and x-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023).
|t J. Appl. Phys.
|v 134
|y 2023
999 C 5 |a 10.1080/08957950802050718
|9 -- missing cx lookup --
|1 VB Prakapenka
|p 225 -
|2 Crossref
|u Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High. Press. Res. 28, 225–235 (2008).
|t High. Press. Res.
|v 28
|y 2008
999 C 5 |a 10.1088/1361-648X/ac8134
|9 -- missing cx lookup --
|1 M Kim
|p 394001 -
|2 Crossref
|u Kim, M. et al. Evidence for superionic H2O and diffusive He–H2O at high temperature and high pressure. J. Phys. Condens. Matter 34, 394001 (2022).
|t J. Phys. Condens. Matter
|v 34
|y 2022
999 C 5 |a 10.1016/j.gca.2003.12.007
|9 -- missing cx lookup --
|1 MR Frank
|p 2781 -
|2 Crossref
|u Frank, M. R., Fei, Y. & Hu, J. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of Ice VII1 1Associate editor: D. Sverjensky. Geochim. Cosmochim. Acta 68, 2781–2790 (2004).
|t Geochim. Cosmochim. Acta
|v 68
|y 2004
999 C 5 |a 10.1038/330737a0
|9 -- missing cx lookup --
|1 RJ Hemley
|p 737 -
|2 Crossref
|u Hemley, R. J. et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987).
|t Nature
|v 330
|y 1987
999 C 5 |a 10.1063/1.3100771
|1 AF Goncharov
|9 -- missing cx lookup --
|2 Crossref
|u Goncharov, A. F. et al. Dissociative melting of ice VII at high pressure. J. Chem. Phys. 130, 124514 (2009).
|t J. Chem. Phys.
|v 130
|y 2009


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21