Journal Article PUBDB-2024-04949

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
CaloClouds II: ultra-fast geometry-independent highly-granular calorimeter simulation

 ;  ;  ;  ;  ;  ;

2024
Inst. of Physics London

Journal of Instrumentation 19(04), P04020 () [10.1088/1748-0221/19/04/P04020]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Report No.: DESY-23-130; arXiv:2309.05704

Abstract: Fast simulation of the energy depositions in high-granular detectors is needed for future collider experiments with ever increasing luminosities. Generative machine learning (ML) models have been shown to speed up and augment the traditional simulation chain in physics analysis. However, the majority of previous efforts were limited to models relying on fixed, regular detector readout geometries. A major advancement is the recently introduced CaloClouds model, a geometry-independent diffusion model, which generates calorimeter showers as point clouds for the electromagnetic calorimeter of the envisioned International Large Detector (ILD). In this work, we introduce CaloClouds II which features a number of key improvements. This includes continuous time score-based modelling, which allows for a 25 step sampling with comparable fidelity to CaloClouds while yielding a $6\times$ speed-up over Geant4 on a single CPU ($5\times$ over CaloClouds). We further distill the diffusion model into a consistency model allowing for accurate sampling in a single step and resulting in a $46\times$ ($37\times$) speed-up. This constitutes the first application of consistency distillation for the generation of calorimeter showers.

Keyword(s): diffusion: model ; calorimeter: electromagnetic ; showers ; machine learning ; ILD detector ; numerical calculations ; programming ; numerical methods ; Simulation methods and programs ; Analysis and statistical methods ; Calorimeter methods

Classification:

Note: 30 pages, 7 figures, 3 tables, code available at https://github.com/FLC-QU-hep/CaloClouds-2

Contributing Institute(s):
  1. Technol. zukünft. Teilchenph. Experim. (FTX)
Research Program(s):
  1. 623 - Data Management and Analysis (POF4-623) (POF4-623)
  2. AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761) (101004761)
  3. 05D23GU4 - Verbundprojekt 05D2022 - KISS: Künstliche Intelligenz zur schnellen Simulation von wissenschaftlichen Daten. Teilprojekt 1. (BMBF-05D23GU4) (BMBF-05D23GU4)
  4. DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306) (390833306)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > >FTX > FTX
Document types > Articles > Journal Article
Public records
Publication Charges
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ;  ;  ;  ;
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
[10.3204/PUBDB-2023-05463]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2024-07-03, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)