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Abstract: Fast simulation of the energy depositions in high-granular detectors is needed for future
collider experiments at ever-increasing luminosities. Generative machine learning (ML) models have
been shown to speed up and augment the traditional simulation chain in physics analysis. However, the
majority of previous efforts were limited to models relying on fixed, regular detector readout geometries.
A major advancement is the recently introduced CaloClouds model, a geometry-independent diffusion
model, which generates calorimeter showers as point clouds for the electromagnetic calorimeter of
the envisioned International Large Detector (ILD).

In this work, we introduce CaloClouds II which features a number of key improvements. This
includes continuous time score-based modelling, which allows for a 25-step sampling with comparable
fidelity to CaloClouds while yielding a 6× speed-up over Geant4 on a single CPU (5× over
CaloClouds). We further distill the diffusion model into a consistency model allowing for accurate
sampling in a single step and resulting in a 46× speed-up over Geant4 (37× over CaloClouds). This
constitutes the first application of consistency distillation for the generation of calorimeter showers.
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1 Introduction

Accurate simulations of particle physics experiments are crucial for comparing theory predictions
with experimental results. With the planned high luminosity upgrade to the Large Hadron Collider
(LHC) [1] and other envisioned collider experiments like those at the International Linear Collider
(ILC) [2], experimental data is going to be taken at ever increasing rates. The amount of simulated
events needs to keep up with these rates, which is difficult to achieve with current Monte Carlo
simulations and the projected computing budgets at large experiments [3, 4].

Detector simulations, such as the simulation of the sensor response in highly granular calorimeters,
can be augmented or sped up by employing modern generative machine learning methods [5–8].
Recent studies have explored the simulation of calorimeter showers with various generative models
such as generative adversarial networks (GANs) [5, 9–19], autoencoders and their variants [20–25],
and normalizing flows [26–33]. Additionally, diffusion models [34–38], also referred to as score-based
generative models, have been shown to provide very high fidelity on calorimeter data [39–43].
Beyond detector simulation, generative models have, for example, also been explored as event
generators [44–50] and parton shower simulators [51–63].

Most previous generative calorimeter models rely on a fixed data geometry, representing
calorimeter showers as 3-dimensional images with the energy as the “color” channel and each pixel
representing a calorimeter sensor. Modern high granularity calorimeters consist of many thousands
of sensor cells or more (e.g. 6 million for the planned CMS HGCal [64]), but a given shower often
deposits energy in only a small fraction of cells resulting in very sparse 3D image representations.
Hence, it is much more computationally efficient to only simulate the actual energy depositions with
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a generative model. This can be achieved by describing the shower with only the coordinates and
energies deposited — i.e. a point cloud. Such a multidimensional calorimeter point cloud can be
represented by four features, the three-dimensional spatial coordinates and the cell energy, with the
number of points equivalent to the number of cells containing hits.

In addition to computational efficiency, such point cloud showers have the major advantage that
they can represent not only cell energies, but also much more granular Geant4 step information, i.e.
simulated energy depositions in the material, not accessible in experiments. Such Geant4 step point
clouds are largely independent of the cell structure within a layer of a given calorimeter, effectively
allowing the translation-invariant projection of the shower into any part of the calorimeter, regardless
of cell type. These projections with Geant4 step point clouds are less likely to produce artifacts due to
gaps or cell staggering than cell-level point clouds would, resulting in a largely geometry-independent
description of the calorimeter shower. This approach is complimentary to a geometry-aware model [65],
which is trained with a dataset containing various calorimeter geometries.

Previous point cloud and graph generative models explored in particle physics [55, 58–61, 63, 66]
were only used for relatively small numbers of points. However, energetic calorimeter showers in
high granularity calorimeters consist of O(1000) points. To generate such showers, we recently
introduced CaloClouds [40] a generative model able to accurately generate photon showers in
the form of point clouds with several thousands of points (namely clustered Geant4 steps), in
order to achieve geometry-independence. Since then, a specific comparison between a generative
model for fixed geometry and a generative model for point cloud structured calorimeter showers
on cell-level was performed in ref. [41].

This CaloClouds architecture consists of multiple sub-models with a diffusion model (see
section 3.1 for details) at its core. Most diffusion models, including the one used in CaloClouds, are
currently held back by their slow sampling speed, as many evaluation steps have to be performed to
generate events. However, recent advances in computer vision achieve very high generative fidelity
on natural image data with O(10) model evaluations using advanced training paradigms and novel
ordinary and stochastic differential equation solvers [67–70]. In this work, we first leverage recent
advances in the training and sampling procedure of diffusion models in order to generate samples
with the CaloClouds II model1 using much fewer model evaluations than the original CaloClouds
model, by following the diffusion paradigm introduced in ref. [68].

Another research direction to speed up generative models is the distillation of diffusion models
into models which require significantly fewer function evaluations during sampling than the original
model [71–75]. Recently, consistency models have been introduced as a novel kind of generative
model allowing for single and multi-step data generation [76]. These consistency models can either be
trained ab-initio or distilled from an already trained diffusion model. We demonstrate the ability to
distill our diffusion model into a consistency model, thereby allowing data generation with a single
model evaluation leading to further speed-ups.

In summary, the proposed CaloClouds II contains the following adjustments:

1. The previously used discrete-time diffusion process is replaced with the continuous-time
diffusion paradigm introduced in ref. [68]. This allows for fewer diffusion iterations during
sampling.

1The code is available at https://github.com/FLC-QU-hep/CaloClouds-2.
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2. The common latent space is removed as we have noticed no advantage for the generative
fidelity when generating photon calorimeter showers. This removal yields a simplified model
architecture and improved training and sampling speeds.

3. We add a calibration to the energy per calorimeter layer as well as applying a calibration to the
center of gravity in the 𝑋- and 𝑌 -direction of the generated point cloud showers. This replaces
the previous total energy calibration and improves the generative fidelity in the longitudinal
energy distribution.

4. Further, we apply consistency distillation to distill the diffusion model into a consistency
model [76], allowing single step generation and therefore greatly improved sampling speed. We
refer to this model as CaloClouds II (CM).

In section 2 we describe the point cloud dataset used for training and evaluation. The diffusion
paradigm and model components of the CaloClouds II model are explained in section 3. We
compare the generative fidelity of CaloClouds II and its variant to the original CaloClouds model
in section 4 and draw our conclusions in section 5.

2 Data samples

To compare the performance of our improved CaloClouds II model we use the same dataset as in
ref. [40]. The data describes a calorimeter shower in the form of a point cloud. Each calorimeter shower
consists of energy depositions of photons showering in a section of the high-granular electromagnetic
calorimeter (ECAL) of the envisioned International Large Detector (ILD) [77]. As a sampling
calorimeter, it consists of 30 layers with passive tungsten material and active silicon sensors. All
individual silicon layers consist of small 5 × 5 mm readout cells with a thickness of 0.5 mm. Between
the first 20 active layers in the longitudinal direction there are passive layers with a thickness of
2.1 mm and between the remaining 10 layers the passive layers have a thickness of 4.2 mm. We
simulated the dataset with Geant4 Version 10.4 (using the QGSP_BERT physics list) implemented in
the iLCSoft framework [78]. The simulated geometric model is implemented in DD4hep [79] and
includes realistic gaps between the sensors and position dependent irregularities. More simulation
details can be found in ref. [40].

During the full Geant4 simulation up to 40,000 individual energy depositions originating from
secondary particles traversing the active sensor material are registered (depending on the incident
photon energy). These energy depositions are commonly referred to as Geant4 steps. All steps that
fall into the volume of the same sensor are subsequently summed, resulting in the energy deposited in
a cell hit. These cell hits (up to 1,500 at 90 GeV) are then used for downstream analysis as it is the
same low-level information that is measurable in a real experimental setting.

Ideally, a generative model should produce cell-level hits to make the full Geant4 simulation
more computationally efficient. Cell-level information is also generated in all other approaches for
fast calorimeter shower simulation with generative machine learning models. However, generating
discrete cell hits directly in the form of a point cloud is challenging, as minor imperfections such
as generating multiple points in the same calorimeter cell can heavily impact the generative fidelity
in various high level observables like the total number of cell hits 𝑁hits.
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Therefore, it could be advantageous to generate point clouds not on hit-level but on Geant4
step-level, i.e. many simulated very granular energy depositions per cell, resulting in much larger point
clouds where points are continuously distributed in space (as opposed to discrete cell hits). Yet, we
found generating a point cloud with up to 40,000 steps prohibitively expensive from a computational
point-of-view. Additionally such a high resolution is not necessary for good generative fidelity.
Therefore in ref. [40] we introduced a middle ground: we cluster the up to 40,000 Geant4 steps into
up to 6,000 points. For this clustering, the steps are grouped into their layer and their energy is binned
in an ultra-high granularity grid with 36× higher granularity than the cell resolution, resulting in a
square grid size of 0.83 × 0.83 mm2. This results in a clustered point cloud of up to 6,000 points —
sufficiently small to be generated with the CaloClouds model, yet distributed in discrete positions
with sufficiently small separation so as to be approximately a continuous point distribution in 3D space.

In addition to a computationally efficient simulation, this makes the generated calorimeter
point cloud largely geometry-independent of the actual cell layout of the calorimeter, unlike point
clouds based on cell-level energy depositions. This ultra-high granularity calorimeter point cloud
can be projected into any part of the calorimeter (except changing its depth), without introducing
reconstruction artifacts due to for example gaps and cell staggering, as successfully shown in ref. [40].

To produce the training set, a total of 524,000 showers were generated with Geant4, with an
incident energy uniformly sampled between 10 and 90 GeV. Additionally, multiple test sets were
generated: 40,000 showers uniformly distributed in energy for the figures shown in section 4.1; 2,000
showers for the single energy plots at 10, 50, and 90 GeV; and 500,000 showers for calculating the
evaluation metrics and the classifier score in section 4.2 and section 4.3.

Each point of the point cloud has four features: the 𝑋- and 𝑌 -position (transverse to the incident
particle direction), the 𝑍-position (parallel to the incident particle direction), and the energy. As
a pre-processing step, the passive material regions are removed such that the point locations in the
dataset also become continuous in the longitudinal 𝑍-axis. The position features, 𝑋 , 𝑌 , and 𝑍 , are
each normalized to the range [−1, 1]. The energy feature of the 4d point cloud is given in MeV.

As it is important for downstream analyses to accurately simulate the behaviour of photon showers
on the level of the physical geometry, i.e. at cell level, all results shown in section 4.1 to 4.3 are on
cell-level. To this end, the calorimeter point cloud — with either up to 40,000 points for Geant4 or with
up to 6,000 points for those generated with CaloClouds/CaloClouds II— are binned to the realistic
ILD ECAL layout (including detector irregularities and gaps) with 30 × 30 × 30 calorimeter cells.

3 Generative model

The CaloClouds II model is an improved version of the original CaloClouds architecture from
ref. [40]. First, we revisit the main model components of the CaloClouds model, afterwards we
outline the improvements made in CaloClouds II.

CaloClouds is a combination of two normalizing flows [80], a VAE-like encoder [81], and a
discrete time Denoising Diffusion Probabilistic Model (DDPM) [37]. Specifically, it consists of the
Shower Flow, a normalizing flow generating conditioning and calibration features; the EPiC Encoder,
an encoder based on Equivariant Point Cloud (EPiC) layers [59] to encode calorimeter showers during
training into a latent space for model conditioning; the Latent Flow, a normalizing flow trained to
model the encoded latent space during sampling; and a diffusion model, called PointWise Net, which
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is a DDPM-based diffusion model generating each point independent and identically distributed
(i.i.d.) based on a common latent space, incident energy and number of points conditioning. The
models are implemented using PyTorch 1.13 [82].

In the following, we outline the differences between CaloClouds and CaloClouds II. The
largest conceptual difference is the change of the diffusion paradigm. We move from a discrete
time diffusion process (DDPM), in which the training and sampling is performed with the same
number of diffusion steps, to a continuous time diffusion paradigm based on ref. [68], sometimes
referred to as EDM diffusion or k-diffusion. This EDM diffusion allows for training a continuous
time score function, which can be used to denoise any noise level, thereby separating the training and
sampling procedure and allowing for sampling with various ordinary differential equation (ODE) and
stochastic differential equation (SDE) solvers and different step sizes. Crucially, it allows to trade
off sampling speed and sampling fidelity without retraining. We find good performance with the
2nd-order Heun ODE solver and the step size parameterisation suggested in ref. [68]. Additional
details on the diffusion paradigm is given in the following section 3.1.

As a second change, CaloClouds II simplifies the original model. We noticed that for the photon
calorimeter shower point clouds we are generating in this study, the shared latent space between
points is not necessary for high generative fidelity. Therefore the latent dimensionality can be set to
zero, so the EPiC Encoder and the Latent Flow are removed. By discarding it we achieve a simpler
model as well as improved training and sampling efficiency.

Next, the Shower Flow for generating conditioning and calibration features is expanded to generate
the total number of points, total visible energy, the relative number of points and energy of each
calorimeter layer in the 𝑍-direction, as well as the center of gravity in the 𝑋- and 𝑌 -direction. This
flow is conditioned on the incident particle energy only. The total number of points generated
per shower is used — together with the incident particle energy — for the conditioning of the
PointWise Net diffusion model.

Overall, the Shower Flow is composed of ten blocks, each with seven coupling layers [83, 84]
conditioned on the incident particle energy. It is implemented using the Pyro package [85]. The Shower
Flow is trained once for 350k iterations and used for all three models (CaloClouds, CaloClouds II,
and CaloClouds II (CM)) compared in section 4.

The post-diffusion calibration expands upon the calibration in ref. [40]: the number of hits per
layer is calibrated by ordering all points in the 𝑍-coordinate and setting iteratively the first 𝑁𝑧,𝑖=1

points to 𝑧𝑖 = 1 (first layer), the second 𝑁𝑧,𝑖=2 points to 𝑧𝑖 = 2 (second layer) and so on until the 30th

layer. Afterwards, we calibrate the total layer energy by re-weighting each point energy to sum up to
the predicted layer energy 𝐸pred,𝑖. Finally, we calculate the center of gravity in 𝑋 and 𝑌−direction
of the point cloud and subtract its difference in comparison to the predicted center of gravity from
each point’s 𝑋− and 𝑌− coordinate to calibrate the overall point cloud center of gravity in these two
dimensions. Note that we further set points with negative generated energy to zero.

During sampling, the number of points predicted by the Shower Flow is calibrated before being
used for the conditioning of the Latent Flow and the PointWise Net. The calibrated number of points
is given by 𝑁cal = 𝑁uncal · 𝑝gen(𝑝data(𝑁uncal)), where 𝑝data is a cubic polynomial fit of the ratio of the
number of points 𝑁uncal, G4 to the number of cell hits 𝑁cell, G4 of the Geant4 showers and 𝑝gen is a
fit of the ratio of number of cell hits 𝑁cell, gen to the (uncalibrated) number of points 𝑁uncal, gen of a
given model. Hence, this polynomial fit 𝑝gen is performed for each model separately. More details
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(b) Sampling

Figure 1. Illustration of the training and sampling procedure of the CaloClouds II model. (a) During training a
random continuous time step 𝑡 is trained conditioned on the shower energy 𝐸 and number of points 𝑁 . The loss,
𝐿MSE, is approximated by a simple mean squared error (MSE) between the noised data and the denoised output.
The scaling functions 𝑐in, 𝑐out, and 𝑐skip are defined following eq. 3.4. (b) During sampling the 𝐸-conditional
Shower Flow generates 𝑁 as well as shower observables for calibration. After a 𝑁 calibration the PointWise Net
denoises iteratively noise N(0, 𝑇2𝑰) into a calorimeter shower. When sampling with CaloClouds II (CM)
only one denoising step is performed.

on the model components and the calibrations can be found in ref. [40]. A schematic overview of
the training and sampling procedure is shown in figure 1.

In the following section 3.1 we describe the continuous time diffusion paradigm implemented
in the CaloClouds II model and in section 3.2 we outline its distillation into a consistency model,
referred to as CaloClouds II (CM). Both models use the same model components outlined above.
Details on the training and sampling hyperparameters are outlined in section 3.3.

3.1 Diffusion model

The diffusion model [34] used in the CaloClouds model is a Denoising Diffusion Probabilistic
Model (DDPM) with the same discrete time steps during model training and sampling [37, 86].
Since the introduction of DDPM, subsequent works, i.e. refs. [38, 68, 87], have shown that it is
advantageous to train a diffusion model with continuous time conditioning. This allows for a more
flexible sampling regime for which various SDE and ODE solvers with either a fixed or an adaptive
number of solving steps can be applied.

In the following, we outline the key parts of a diffusion model based on the paradigm outlined
in ref. [68]. The training of a diffusion model starts by diffusing a data distribution 𝑝data(𝑥) with
an SDE [38] in the forward direction (“data” → “noise”) via

dx𝑡 = 𝝁 (x𝑡 , 𝑡) d𝑡 + 𝜎(𝑡)dw𝑡 , (3.1)

where 𝑡 is a fixed time step defined in the interval 𝑡 ∈ [0, 𝑇] with 𝑇 > 0 as a hyperparameter. 𝝁(·, ·)
and 𝜎(·) denote the drift and diffusion coefficients, and w𝑡∈[0,𝑇 ] is the standard Brownian motion.
The distribution of x𝑡 ∼ 𝑝𝑡 (x) = 𝑝data(x) ∗ N (0, 𝑇2𝑰) (∗ as the convolution operator) and at time
step zero it is identical to the data distribution 𝑝0(x) = 𝑝data(x). When reversing this diffusion
process (“noise” → “data”), a so called probability flow ODE emerges with a solution trajectory
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sampled at time step 𝑡 given by

dx𝑡 =
[
𝝁 (x𝑡 , 𝑡) −

1
2
𝜎(𝑡)2∇ log 𝑝𝑡 (x𝑡 )

]
d𝑡, (3.2)

with ∇ log 𝑝𝑡 (x𝑡 ) as the score function of 𝑝𝑡 (x). As suggested in ref. [68], we set the coefficients
in the SDE in eq. 3.1 to 𝝁(x, 𝑡) = 0 and 𝜎(𝑡) =

√
2𝑡 to ensure that 𝑝𝑇 (x) is close to the distribution

N(0, 𝑇2𝑰). Since the exact analytical score function is usually unknown, we train a neural network
with weights 𝜙 as a score model 𝒔𝜙 (x, 𝑡) ≈ ∇ log 𝑝𝑡 (x𝑡 ) to get the empirical probability flow ODE:

dx𝑡
d𝑡

= −𝑡𝒔𝜙 (x𝑡 , 𝑡) (3.3)

For the purpose of numerically stable scaling behaviour, we follow ref. [68] and actually train
a separate network 𝒅𝜙 with 𝑡-dependent skip connections from which 𝒔𝜙 is derived:

𝒔𝜃 (x, 𝑡) = 𝑐skip(𝑡) x + 𝑐out(𝑡) 𝒅𝜃 (𝑐in(𝑡) x, 𝑡) (3.4)

The coefficients are time dependent and control the skip connection via 𝑐skip = 𝜎2
data/

(
𝜎2

data + 𝑡2
)
,

the input scaling via 𝑐in = 𝑡 · 𝜎data/
√︃
𝜎2

data + 𝑡2 and the output scaling via 𝑐out = 1/
√︃
𝜎2

data + 𝑡2. The
hyperparameter 𝜎data corresponds roughly to the variance of 𝑝data(x) and is set to 𝜎data = 0.5. During
training a random time step is drawn from the continuous noise distribution ln(𝑡) = N

(
𝑃mean, 𝑃

2
std
)
,

with 𝑃mean = −1.2 and 𝑃std = 1.2 (the default parameters chosen in ref. [68]), and the loss is given by:

E𝑡 ,x𝑡 ,x0

[
∥𝒔𝜃 (x𝑡 , 𝑡) − x0∥2

2
]

(3.5)

An illustration of this training process can be found in figure 1(a).
For sampling from the trained score model, one samples from noise at time step 𝑇 as x̂𝑇 ∼

N(0, 𝑇2𝑰) and integrates the probability flow ODE in eq. 3.2 over discrete time steps backwards in
time using a numerical ODE solver. This results in a sample x̂0 which provides a good approximation
of a sample from the data distribution 𝑝data(x). In practice the solver is usually stopped at a small
positive value 𝜖 > 0 to avoid numerical instabilities resulting in the approximate sample x̂𝜖 ≈ x̂0.
For our sampling, we use the suggested values and step scheduling from ref. [68] with 𝑇 = 80 and
𝜖 = 0.002, and apply the 2nd order Heun ODE solver.

3.2 Consistency model

Consistency Models (CM) [76] are a recently introduced generative architecture. They allow for
single-step or multi-step generation with the same model and can be trained standalone or distilled from
a diffusion model that has already been trained. A consistency model 𝒇Φ with weights Φ is trained to
estimate the consistency function 𝒇 from data. The consistency function is defined as 𝒇 : (x𝑡 , 𝑡) → x𝜖

and is self-consistent in the sense that any pair of (x𝑡 , 𝑡) belong to the same probability flow ODE
trajectory. This means that the result of a function evaluation at any point on this trajectory leads to
the same result, i.e. 𝒇 (x𝑡 , 𝑡) = 𝒇 (x𝑡 ′ , 𝑡′) for all 𝑡, 𝑡′ ∈ [𝜖, 𝑇]. The time interval describes the minimum
noise at time step 𝜖 and the maximum noise at time 𝑇 .

For sampling from a trained consistency model in a single model pass, one initializes x̂𝑇 ∼
N(0, 𝑇2𝑰) and performs one function evaluation to get x̂𝜖 = 𝒇Φ(x𝑇 , 𝑇). It is also possible to sample
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Figure 2. Illustration of the consistency distillation process distilling the diffusion model of CaloClouds II
(teacher model) into a consistency model (student and target model). The student model is updated via gradient
descent and the target model is updated as an exponential moving average of the student model weights.

with multiple model passes by first evaluating 𝒇Φ(x𝑇 , 𝑇), and then adding noise again from N(0, 𝑡2𝑰)
to denoise a second time. This can be done in an alternating fashion for an arbitrary number of
steps. Often multi-step generation appears to improve sample fidelity [63, 68], however we are able
to achieve comparable fidelity to the original diffusion model with only a single model evaluation
and therefore limit ourselves to this most efficient scenario.

In line with ref. [76], we found improved training fidelity when distilling the consistency model
from a diffusion model instead of training it individually. For this purpose we distill the consistency
model 𝒇Φ(x, 𝑡) from the diffusion model 𝒔𝜙 (x, 𝑡) based on the PointWise Net of CaloClouds II
introduced in the previous section 3.1. The distillation is performed by separating the continuous
time space [𝜖, 𝑇] into 𝑁 − 1 sub intervals (we use 𝑁 = 18). The interval boundaries are determined
by the same step size parameterisation as in the diffusion model sampling formulation [68]. During
training a random boundary time step 𝑡𝑛∈[1,𝑁 ] is chosen to perform the distillation. We refer to
the original diffusion model here as the teacher model 𝒔𝜙 (x, 𝑡) and to the distilled consistency
model during distillation as the student model 𝒇Φ(x, 𝑡). Additionally, we call the final distilled
consistency model the target model 𝒇Φ− (x, 𝑡). We use the self-consistency property of the consistency
model for training since it requires a well trained model to obey 𝒇Φ(x𝑡𝑛+1 , 𝑡𝑛+1) = 𝒇Φ(x𝑡𝑛 , 𝑡𝑛). The
neighboring points (x𝑡𝑛+1 , x𝑡𝑛) on the probability flow ODE trajectory are obtained by sampling
x ∼ 𝑝data, adding noise to it to get x𝑡𝑛+1 ∼ N(x, 𝑡2

𝑛+1𝑰) and performing one ODE solver step with
the teacher diffusion model to compute x𝑡𝑛 = 𝒔𝜙 (x𝑡𝑛+1 , 𝑡𝑛+1). This allows the student consistency
model 𝒇Φ(x, 𝑡) to be trained with the loss:

E𝑡 ,x𝑡 ,x0

[

 𝒇Φ(x𝑡𝑛+1 , 𝑡𝑛+1) − 𝒇Φ− (x𝑡𝑛 , 𝑡𝑛)


2

2

]
(3.6)

The target model 𝒇Φ− (x𝑡 , 𝑡) weights Φ− are updated after every iteration as a running average of the
student model weights Φ. An overview of the distillation procedure is illustrated in figure 2.
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3.3 Training and Sampling

The diffusion model in CaloClouds II was trained for 2M iterations with a batch size of 128 using
the Adam optimizer [88] with a fixed learning rate of 10−4. As the final model, we use an exponential
moving average (EMA) of the model weights. We scan several values for the number of ODE solver
steps 𝑁 and find 𝑁 = 13 optimal as with fewer steps than this, the generative fidelity as probed by
the correct learning of physically relevant shower shapes with CaloClouds II deteriorates. This
results in 2𝑁 − 1 diffusion model evaluations since the last step of the Heun ODE solver does not
perform a 2nd order correction. Compared to CaloClouds with 100 function evaluations this already
hints at a significant computational speed-up.

The diffusion model used in CaloClouds II was distilled into a consistency model for Calo-
Clouds II (CM) by using the Adam optimizer with a fixed learning rate of 10−4 for 1M iterations
with a batch size of 256. Notably, only a single training is necessary for distilling a model which
is able to perform single step generation, as opposed to the multiple trainings required for e.g.
progressive distillation [42, 66, 72].

4 Results

In the following, we compare the original CaloClouds model with the improved CaloClouds II
model and its distilled variant CaloClouds II (CM). To achieve a fair comparison between the three
models, we use the same training of the Shower Flow and the same calibration procedure for all three
models. Hence, the Shower Flow from the CaloClouds II model was also used for generating samples
with the CaloClouds model — a slight modification compared to the original CaloClouds model
in ref. [40]. This means that the samples generated with the CaloClouds model also include the
energy per layer and center of gravity in 𝑋 and 𝑌 calibration. For the Latent Flow and the PointWise
Net of CaloClouds the same model weights as in ref. [40] were used.

We first show the performance of our generative models based on the same observables as discussed
in ref. [40] in section 4.1. Next, in section 4.2, we quantify the performance of the models with
multiple Wasserstein-distance-based scores for the usual set of calorimeter shower observables and in
section 4.3 we use a classifier to distinguish between simulated Geant4 showers and generated showers
based on the calculated shower observables. Finally in section 4.4 we benchmark the computational
efficiency of our models and compare them to the baseline simulation timing with Geant4.

4.1 Physics performance

In this section, we compare various calorimeter shower distributions from ref. [40] between the Geant4
test set and datasets generated using CaloClouds, CaloClouds II, and CaloClouds II (CM). First,
we compare various cell-level and shower observables calculated from the model generated showers to
Geant4 simulations with samples of incident photons with energies uniformly distributed between 10
and 90 GeV (also referred to as full spectrum). In figure 3 we investigate three representations of the
energy distributed in the calorimeter cells, namely the per-cell energy distribution (left), the radial
shower profile (center) and the longitudinal shower profile (right). The per-cell energy distribution
contains the energy of the cells of all showers in the test dataset. The peak of the distribution at
about 0.2 MeV corresponds to the most probable energy deposition of a minimum ionising particle
(MIP) in the silicon sensor. For downstream analyses a cell energy cut at half a MIP is applied, since
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Figure 3. Histogram of the cell energies (left), radial shower profile (center), and longitudinal shower profile
(right) for Geant4, CaloClouds, CaloClouds II, and CaloClouds II (CM). In the cell energy distribution,
the region below 0.1 MeV is grayed out (see main text for details). All distributions are calculated with 40,000
events sampled with a uniform distribution of incident particle energies between 10 and 90 GeV. The bottom
panel provides the ratio to Geant4. The error band corresponds to the statistical uncertainty in each bin.

below this threshold the sensor response is indistinguishable from electronic noise. Hence this cut
was applied to all showers when calculating the shower observables and scores in this section. All
models describe the cell energy distribution reasonably well. For most of the range the CaloClouds II
models perform better than CaloClouds, however there are a few outliers with energies which are
too high produced by CaloClouds II compared to the other two models.

The radial shower profile describes the average radial energy distribution around the central
shower axis (in 𝑍-direction) of the ECAL. Below a radius of about 180 mm, the distribution is
well described by all three models, above 180 mm, the models deviate from Geant4. Overall the
CaloClouds II (CM) model represents the Geant4 distribution most closely. Note that this is a
distribution that is not directly impacted by any of the post-diffusion calibrations performed and is
therefore a good benchmark for the effectiveness of the point cloud diffusion approach alone.

The longitudinal shower profile describes how much energy is deposited on average in each of the
30 calorimeter layers. In the previous iteration of CaloClouds it was not well modeled, but since we
now calibrate the energy per layer with the improved Shower Flow for the generated point clouds it is
well modelled. However, we observe deviations in the first few layers for all three models. Since they
share the same Shower Flow, we expect future improvements in this model to translate to an improved
longitudinal profile. Further, a small outlier can be seen for the CaloClouds II model around the
10th layer. The alternating higher and lower energy depositions per layer are due to the fact that for
technical reasons, pairs of silicon sensors surrounding one tungsten absorber layer and facing opposite
directions are installed into a tungsten structure with every other absorber layer. This results in the
observed pair-wise difference in the sampling fraction between consecutive layers.

In figure 4 we show the center of gravity distribution 𝑚1,𝑖∈{𝑋,𝑌 ,𝑍 } (the energy weighted shower
centroid) in the 𝑋-, 𝑌 -, and 𝑍-directions. Note that in the 𝑋- and 𝑌 -directions these distribution are
calibrated for the original point cloud, before the cell-level observables are calculated. While the
𝑚1,𝑋 distribution is very well modelled by all three generative models, 𝑚1,𝑌 is slightly shifted to
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Figure 4. Position of the center of gravity of showers along the 𝑋 (left), 𝑌 (center), and 𝑍 (right) directions. All
distributions are calculated for 40,000 showers with a uniform distribution of incident particle energies between
10 and 90 GeV. The error band corresponds to the statistical uncertainty in each bin.

lower center of gravity values for all models with the CaloClouds distribution additionally being
marginally too narrow. The centers of gravity in 𝑋 and 𝑌 behave slightly different as a magnetic
field is simulated in the 𝑌 -direction and the active sensors are staggered in the 𝑌 -direction while
they are all aligned in the 𝑋-direction. Due to the number of hits and energy per layer calibrations
applied, the distribution of 𝑚1,𝑍 is very well modelled. Only in the region around 1925 mm is the
CaloClouds II model slightly worse than the other two models. Overall, the three models are
reasonably close to the Geant4 simulation in all six observables.
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Figure 5. Visible energy sum (left) and the number of hits (right) distributions, for 10, 50, and 90 GeV showers.
For each energy and model, 2,000 showers are shown. The error band corresponds to the statistical uncertainty
in each bin.

Next, we investigate the models’ fidelity for single incident photon energies of 10, 50, and 90 GeV.
In figure 5 we show the distributions of the total visible energy (left) and the distributions of the number
of hits (cells with deposited energy above the half MIP threshold) for the three single energy datasets
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of 2k showers each. The total energy is well represented by all three models. The number of hits on the
other hand is one of the most difficult distributions to represent well with a point cloud generative model.
Here high fidelity is still achieved by applying the number of points calibration discussed in section 3.
Overall the CaloClouds distributions are slightly too wide as was observed already in ref. [40]. In
comparison, CaloClouds II represents the shape of the distribution better, yet in particular for 10 and
90 GeV showers the mean is a bit too large for the CaloClouds II (CM) generated events. This is
explainable due to the nature of the polynomial fit used for the number of points calibration. The fit
does not perform very well at the edges of the incident energy space. It is known that extrapolation is
difficult for generative models, therefore we conjecture that with a training set including lower and
higher energies, the fidelity at 10 and 90 GeV would approach the performance at 50 GeV. Overall the
CaloClouds II models perform very well and are comparable in fidelity to the CaloClouds model.

4.2 Evaluation Scores

We next investigate the performance of all three CaloClouds models by calculating scores from
the high level calorimeter shower observables considered in the previous section. This allows us
to put a number on the fidelity observed in plots presented in the previous section 4.2 and not only
rely on comparing distributions by eye.

The following observables are considered in order to calculate the one-dimensional scores: the num-
ber of hits (cells with energy depositions above the half MIP threshold) 𝑁hits, the sampling fraction (the
ratio of the visible energy deposited in the calorimeter to the incident photon energy) 𝐸vis/𝐸inc, the cell
energy 𝐸cell , the center of gravity in the 𝑋-,𝑌 -, and 𝑍-directions𝑚1,𝑖∈{𝑋,𝑌 ,𝑍 } , and ten observables each
for the longitudinal energy 𝐸long,𝑖∈[1,10] and for the radial energy 𝐸radial,𝑖∈[1,10] . The ten observables for
the longitudinal (radial) energy depositions are computed with the energy clustered in consecutive layers
(concentric regions) such that on average all 10 observables 𝐸long,𝑖∈[1,10] and 𝐸radial,𝑖∈[1,10] are com-
puted with the same statistics. Further details on these in total 20 observables can be found in appendix A.

To compare the distributions of these observables between Geant4 and the three generative
models, we calculate the 1-Wasserstein distance 𝑊1 — also known as the earth movers distance
— between each pair of distributions. The advantages of the Wasserstein distance are that it is an
unbinned estimator, for one-dimensional distributions it is computationally efficient to calculate, and
no hyperparameter choices have to be made apart from the number of events used for comparison.

Following earlier works using Wasserstein distance based model evaluation scores to compare
generative models [55, 58], we calculate the distance between observables calculated from 50k Geant4
and 50k model generated showers. This is done 10× for independent uniformly distributed samples
and we report the mean and standard deviation of the scores in table 1. For this purpose, we simulated
500k Geant4 samples and generated 500k showers with each CaloClouds model. To have all scores
in a similar order of magnitude, we standardize each observable before we calculate the 𝑊1 score.
For the layer energy and radial energy scores, 𝑊𝐸long

1 and 𝑊
𝐸radial
1 , we report the average Wasserstein

distance over all ten bins. The hit energy score 𝑊𝐸cell
1 is calculated for 50k cell hits. In addition to

the generative model scores, we also calculate the scores for Geant4 itself, comparing 50k Geant4
showers to a separate set of 50k Geant4 showers.

As can be seen in table 1, most model scores are quite close together. We observe a few outliers, i.e.
in the sampling fraction score 𝑊𝐸vis/𝐸inc

1 the CaloClouds and CaloClouds II models are much better
CaloClouds II model and in the radial energy score 𝑊𝐸radial

1 the CaloClouds II models outperform
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CaloClouds, which is in line with the histogram shown in figure 3. Overall, CaloClouds II (CM)
appears to produce higher fidelity showers than the other two models, since it has the best score in four
of the scores and does not exhibit any large outliers compared to the other two models. However, as can
also be seen in the histograms in section 4.1, none of the scores — with the exception of𝑊𝑚1,𝑍

1 — quite
reaches the fidelity of the Geant4 truth itself. Hence we conclude that while all three models generate
high fidelity ECAL showers, they should be further improved to match Geant4 exactly in the future.

Table 1. Model performance comparison with 1-Wasserstein distance based scores for various standardized
shower observables. The values presented are the mean and standard deviation of 10 calculated scores comparing
50k Geant4 and 50k generated showers.

Simulator 𝑊
𝑁hits
1 𝑊

𝐸vis/𝐸inc
1 𝑊

𝐸cell
1 𝑊

𝐸long
1 𝑊

𝐸radial
1 𝑊

𝑚1,𝑋
1 𝑊

𝑚1,𝑌
1 𝑊

𝑚1,𝑍
1

(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

Geant4 0.7 ± 0.2 0.8 ± 0.2 0.9 ± 0.4 0.7 ± 0.8 0.7 ± 0.1 0.9 ± 0.1 1.1 ± 0.3 0.9 ± 0.3
CaloClouds 2.5 ± 0.3 11.4 ± 0.4 15.9 ± 0.7 2.0 ± 1.3 38.8 ± 1.4 4.0 ± 0.4 8.7 ± 0.3 1.4 ± 0.5
CaloClouds II 3.6 ± 0.5 26.4 ± 0.4 15.3 ± 0.6 3.7 ± 1.6 11.6 ± 1.5 2.4 ± 0.4 7.6 ± 0.2 3.9 ± 0.4
CaloClouds II (CM) 6.1 ± 0.7 9.8 ± 0.5 16.0 ± 0.7 2.0 ± 1.4 8.3 ± 1.9 3.0 ± 0.4 9.5 ± 0.6 1.2 ± 0.5

As a side note, the Wasserstein distance can be heavily impacted by outliers in the distributions.
Therefore it does not always correlate well with the distribution shape observed in histograms. However,
the scores complement the visual inspections of histograms and distributions shown in section 4.1 well.

While useful for comparing generative architectures, 1-Wasserstein distances only consider each
dimension of the problem individually. Of course, a successful generative model should also accurately
describe higher order correlations. We investigate this in the next section.

4.3 Classifier scores

We further compare the model generated showers to the Geant4 simulation by training a fully
connected high-level classifier using the shower observables discussed in the previous section 4.2 to
distinguish between model generated and Geant4 simulated showers. The 25 input shower observables
are the ten radial and longitudinal energy observables, as well as the three center of gravity variables
and the number of hits and total visible energy. For the datasets, we use 500k Geant4 showers and
500k showers generated by each generative model. A 80%, 10%, 10% data split is applied, resulting
in a training set of 800k showers and a validation and test set with 100k showers each.

The classifier is implemented as a fully connected neural network with three layers (containing
32, 16, 8 nodes respectively) with LeakyReLU [89] activation functions, and one output node with a
Sigmoid activation. It is trained with the Adam optimizer [88] for 10 epochs for each dataset using a
binary cross-entropy loss. The final model epoch is chosen based on the lowest validation loss.

To evaluate the classifier we use the area under the receiver operating characteristic curve (AUC)
score calculated on the test set. This kind of classifier score is also used in other publications evaluating
generative models in high energy physics such as ref. [24, 27, 28, 30, 33, 58, 90]. In case the classifier
can perfectly separate the Geant4 and model generated datasets, it will result in an AUC = 1.0. For a
generated dataset that is indistinguishable from Geant4 simulation, we expect a confused classifier
with an AUC = 0.5. Values in between are difficult to interpret in absolute terms, but can give a rough
indication of how well the generative models are performing compared to each other. Note that its
already not trivial to implement a generative model that achieves AUC values below 1.0.
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We trained the classifier ten times with a different train/ test/ validation data split each time.
In table 2 we present the mean AUC and standard deviation of these ten classifier trainings. The
CaloClouds generated dataset performs the worst, leading to an almost perfect classification with
AUC = 0.999. The two CaloClouds II variants both have a better score clearly separated from an
AUC = 1.0. With an AUC = 0.923 the CaloClouds II (CM) model performs slighly better than the
CaloClouds II model. For most events, both models result in a separability from the Geant4 simulated
showers, but constitute a clear improvement over the baseline CaloClouds implementation. The better
performance of the CaloClouds II variants is likely due to the improved radial energy distribution, as
we observed a rather large deviation in the 𝑊𝐸radial

1 score and in the radial distributions in figure 6.

Table 2. Model performance comparison with area under the receiver operating characteristic curve (AUC) score.

Simulator AUC

CaloClouds 0.999 ± 0.001
CaloClouds II 0.928 ± 0.001
CaloClouds II (CM) 0.923 ± 0.001

4.4 Timing

In this section, we benchmark the average time to produce a single calorimeter shower with the
three models considered and investigate the speed-up over the baseline Geant4 simulation. The
timing results are presented in table 3.

On both a single CPU and on an NVIDIA® A100 GPU we generated 25× 2,000 showers with
the same uniform energy distribution between 10 and 90 GeV. We report the mean and standard
deviation of generating these showers. In particular the timing on a single CPU is interesting for current
applications of generative models in high energy physics, as CPUs are much more widely available
than GPUs and the current computing infrastructure relies on simulations run on CPUs. Further, the

Table 3. Comparison of the computational performance of CaloClouds, CaloClouds II, and Calo-
Clouds II (CM) to the baseline Geant4 simulator on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU)
and on an NVIDIA® A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident energy
uniformly distributed between 10 and 90 GeV. Values presented are the means and standard deviations over 10
runs. The number of function evaluations (NFE) indicate the number of diffusion model passes.

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ×1

CaloClouds 100 1 3146.71 ± 31.66 ×1.2
CaloClouds II 25 1 651.68 ± 4.21 ×6.0
CaloClouds II (CM) 1 1 84.35 ± 0.22 ×46

GPU CaloClouds 100 64 24.91 ± 0.72 ×157
CaloClouds II 25 64 6.12 ± 0.13 ×640
CaloClouds II (CM) 1 64 2.09 ± 0.13 ×1873
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single CPU timing facilitates a direct comparison to the Geant4 simulation. Here CaloClouds
already yields a speed up of 1.2×, but with less sampling steps CaloClouds II achieves a speed up
of 6.0×. However, when implementing the consistency distillation, we achieve a speed up of 46×
with the CaloClouds II (CM) model even surpassing previous generative models on the same kind
of dataset such as the BIB-AE [20] by about a factor 5.

On an NVIDIA® A100 GPU the CaloClouds model achieves a speed up of 157×, CaloClouds II
achieves 640×, and CaloClouds II (CM) achieves 1873× speed up over the baseline Geant4
simulation on a single CPU. Note that Geant4 is currently not compatible with GPUs and that GPUs
are significantly more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA® A100 GPU hardware
took around 80 hours for 800k iterations with a batch size of 128, while training of the CaloClouds II
model took around 50 hours for 2 million iterations with the same batch size. The consistency
distillation for 1 million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of a combination of the
improved diffusion paradigm requiring a reduced number of function evaluations as well as the removal
of the latent flow. The speed up due to the consistency model in CaloClouds II (CM) yields another
large factor, since only a single model evaluation is performed. Both models would be slightly slower
when applied in conjunction with the Latent Flow of the CaloClouds model as one evaluation of the
Latent Flow is about 50% slower than a single evaluation of the PointWise Net. For a large number of
model passes of the PointWise Net in the diffusion framework, the efficiency of the Latent Flow is
negligible. However when we consider CaloClouds II (CM) with a single model pass, the application
of the Latent Flow would have a noticeable impact on computational performance. Therefore, we
removed the Latent Flow in favour of model efficiency as we did not see any improvement in generative
fidelity when using it in the CaloClouds II framework.

5 Conclusions

CaloClouds was the first generative model to achieve high-fidelity highly-granular photon calorimeter
showers in the form of point clouds with a number of points of O(1000). Due to their sparsity,
describing calorimeter showers as point clouds is computationally more efficient than describing them
with fixed data structures, i.e. 3D images. Additionally, as the point clouds are based on clustered
Geant4 steps, they allow for a translation-invariant and geometry-independent shower representation.
Such cell-geometry-independent models could be easily adapted for fast simulations of calorimeters
with non-square cell geometries, i.e. hexagonal cells as used in the envisioned CMS HGCAL [64].

With CaloClouds II we introduce a more streamlined version of CaloClouds utilizing the
advanced diffusion paradigm from ref. [68]. It allows for sampling with less model evaluations and
for distillation into a consistency model. Using the consistency model in CaloClouds II (CM),
generation with a single model evaluation is possible and results in a greatly improved computational
efficiency and a speed up of 46× over Geant4 on a single CPU. This single event CPU performance
is particularly promising for introducing a generative model into existing Geant4-based simulation
pipelines. As opposed to other diffusion distillation methods like progressive distillation, consistency
distillation only requires a single training to distill the diffusion model in CaloClouds II into a single
step generative model, further emphasising the computational advantage of the models presented here.
To our knowledge, this constitutes the first application of a consistency model to calorimeter data.
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We compare all three point cloud generative models using one-dimensional distributions and
a classifier-based measure and find comparable performance with a slight advantage for the Calo-
Clouds II variants. In particular, the CaloClouds II (CM) model exhibits superior performance while
being significantly more computationally efficient. It is counter-intuitive, that a distilled consistency
model outperforms the original diffusion model, however, it is known that ODE solvers might introduce
errors in earlier denoising steps that are then propagated to the generated samples [68]. The consistency
model avoids this since we use it for single-shot generation. Yet, slight deviations from the Geant4
simulations are still visible in various shower observables. Further improvements could likely be
achieved by investigating more complex architectures for the diffusion model such as fast transformer
implementations [91], equivariant point cloud (EPiC) layers [59], or cross-attention [92].

During the completion of this manuscript, another EDM diffusion based model with subsequent
consistency distillation was shown to achieve good fidelity when generating particle jets in the
form of point clouds with up to 150 points [63]. While technically a similar approach, in our case
the consistency model does not lose generative fidelity compared to the diffusion model and we
demonstrate the generation of two orders of magnitude more points (6000 vs 150).

In conclusion, the CaloClouds II model generates high fidelity electromagnetic showers when
benchmarked on various shower observables against the baseline Geant4 simulation. In combination
with consistency distillation the CaloClouds II (CM) model yields an accurate simulator, which is
significantly faster than Geant4 on identical hardware. This constitutes an important step towards the
integration of point-cloud based generative models in actual simulation workflows.
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A Radial and longitudinal energy observables

To explore the radial and longitudinal energy profile shown in figure 3 further and to calculate the evaluation
scores in section 4.2, we define ten radial and longitudinal energy observables for the calorimeter showers.

Respectively, the ten observables are defined such that energy is clustered in each observable with
an equal amount of statistics. Put differently, the energy is binned in ten quantiles with approximately
the same number of cell hits in each quantile. The energy bins are defined by the quantiles calculated
on the Geant4 test set with 40,000 events. While the bin edges are precisely defined for the radial
energy, we round the bin edges of the longitudinal observables to the nearest layer integer number.

Histograms of the radial energy observables 𝐸radial,𝑖∈[1,10] are shown in figure 6 and of longitudinal
energy observables 𝐸long,𝑖∈[1,10] in figure 7. The bin edges for all observables are given in table 4.
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Figure 6. Radial energy observables for 50,000 showers. The error band corresponds to the statistical uncertainty
in each bin.
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Figure 7. Longitudinal energy observables for 50,000 showers. The error band corresponds to the statistical
uncertainty in each bin.
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Table 4. Bin edges for calculating the radial and longitudinal energy observables 𝐸radial,𝑖∈[1,10] and 𝐸long,𝑖∈[1,10] .
Determined for ten quantiles each including approximately the same number of cell hits. All bins are half-open,
except the last bin.

Bin edges 0 1 2 3 4 5 6 7 8 9 10

Edges for 𝐸radial,𝑖∈[1,10] [mm] 0 6.6 9.8 13.0 17.0 23.4 33.6 40.1 48.5 68.8 300
Edges for 𝐸long,𝑖∈[1,10] [layer] 1 9 12 14 16 17 19 20 22 25 30

References

[1] I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report,
Tech. Rep. CERN-2020-010 CERN, Geneva, Switzerland (2020) [DOI:10.23731/CYRM-2020-0010].

[2] T. Behnke et al., The International Linear Collider Technical Design Report - Volume 1: Executive
Summary, arXiv:1306.6327.

[3] HEP Software Foundation collaboration, A Roadmap for HEP Software and Computing R&D for the
2020s, Comput. Softw. Big Sci. 3 (2019) 7 [arXiv:1712.06982].

[4] A. Boehnlein et al., HL-LHC Software and Computing Review Panel, 2nd Report, Tech. Rep.
CERN-LHCC-2022-007, CERN, Geneva (2022).

[5] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with Generative Adversarial Networks:
An Application to 3D Particle Showers in Multilayer Calorimeters, Phys. Rev. Lett. 120 (2018) 042003
[arXiv:1705.02355].

[6] A. Butter et al., GANplifying event samples, SciPost Phys. 10 (2021) 139 [arXiv:2008.06545].

[7] S. Bieringer et al., Calomplification — the power of generative calorimeter models, 2022 JINST 17
P09028 [arXiv:2202.07352].

[8] A. Adelmann et al., New directions for surrogate models and differentiable programming for High Energy
Physics detector simulation, in the proceedings of the Snowmass 2021, Seattle, WA, U.S.A., 17–26 July
2022 [arXiv:2203.08806].

[9] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D high energy particle showers in
multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97 (2018)
014021 [arXiv:1712.10321].

[10] L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in GAN-Accelerated
Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085 (2018) 042017
[arXiv:1711.08813].

[11] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refining particle detector
simulations using the Wasserstein distance in adversarial networks, Comput. Softw. Big Sci. 2 (2018) 4
[arXiv:1802.03325].

[12] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter showers using
a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3 (2019) 4 [arXiv:1807.01954].

[13] D. Belayneh et al., Calorimetry with deep learning: particle simulation and reconstruction for collider
physics, Eur. Phys. J. C 80 (2020) 688 [arXiv:1912.06794].

[14] ATLAS collaboration, Fast simulation of the ATLAS calorimeter system with Generative Adversarial
Networks, Tech. Rep. ATL-SOFT-PUB-2020-006, CERN, Geneva (2020).

– 18 –

https://doi.org/10.23731/CYRM-2020-0010
https://arxiv.org/abs/1306.6327
https://doi.org/10.1007/s41781-018-0018-8
https://arxiv.org/abs/1712.06982
http://cds.cern.ch/record/2803119
https://doi.org/10.1103/PhysRevLett.120.042003
https://arxiv.org/abs/1705.02355
https://doi.org/10.21468/SciPostPhys.10.6.139
https://arxiv.org/abs/2008.06545
https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1088/1748-0221/17/09/P09028
https://arxiv.org/abs/2202.07352
https://arxiv.org/abs/2203.08806
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://arxiv.org/abs/1712.10321
https://doi.org/10.1088/1742-6596/1085/4/042017
https://arxiv.org/abs/1711.08813
https://doi.org/10.1007/s41781-018-0008-x
https://arxiv.org/abs/1802.03325
https://doi.org/10.1007/s41781-018-0019-7
https://arxiv.org/abs/1807.01954
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://arxiv.org/abs/1912.06794
http://cds.cern.ch/record/2746032


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
4
0
2
0

[15] F. Carminati et al., Three dimensional Generative Adversarial Networks for fast simulation, J. Phys. Conf.
Ser. 1085 (2018) 032016.

[16] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle Detectors Using Generative
Adversarial Networks, Comput. Softw. Big Sci. 2 (2018) 8 [arXiv:1805.00850].

[17] ATLAS collaboration, Deep generative models for fast shower simulation in ATLAS, Tech. Rep.
ATL-SOFT-PUB-2018-001, CERN, Geneva (2018).

[18] ATLAS collaboration, AtlFast3: The Next Generation of Fast Simulation in ATLAS, Comput. Softw. Big
Sci. 6 (2022) 7 [arXiv:2109.02551].

[19] H. Hashemi et al., Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and
Self-Supervised Relational Reasoning, arXiv:2303.08046.

[20] E. Buhmann et al., Getting High: High Fidelity Simulation of High Granularity Calorimeters with High
Speed, Comput. Softw. Big Sci. 5 (2021) 13 [arXiv:2005.05334].

[21] E. Buhmann et al., Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network,
EPJ Web Conf. 251 (2021) 03003 [arXiv:2102.12491].

[22] E. Buhmann et al., Hadrons, better, faster, stronger, Mach. Learn. Sci. Tech. 3 (2022) 025014
[arXiv:2112.09709].

[23] ATLAS collaboration, Deep generative models for fast photon shower simulation in ATLAS,
arXiv:2210.06204.

[24] J.C. Cresswell et al., CaloMan: Fast generation of calorimeter showers with density estimation on learned
manifolds, in the proceedings of the 36th Conference on Neural Information Processing Systems:
Workshop on Machine Learning and the Physical Sciences, New Orleans, LO, U.S.A., 3 December 2022
[arXiv:2211.15380].

[25] S. Diefenbacher et al., New angles on fast calorimeter shower simulation, Mach. Learn. Sci. Tech. 4 (2023)
035044 [arXiv:2303.18150].

[26] C. Chen et al., Analysis-Specific Fast Simulation at the LHC with Deep Learning, Comput. Softw. Big Sci.
5 (2021) 15.

[27] C. Krause and D. Shih, Fast and accurate simulations of calorimeter showers with normalizing flows,
Phys. Rev. D 107 (2023) 113003 [arXiv:2106.05285].

[28] C. Krause and D. Shih, Accelerating accurate simulations of calorimeter showers with normalizing flows
and probability density distillation, Phys. Rev. D 107 (2023) 113004 [arXiv:2110.11377].

[29] S. Schnake, D. Krücker and K. Borras, Generating Calorimeter Showers as Point Clouds, in the
proceedings of the Machine Learning and the Physical Sciences Workshop, New Orleans, LO, U.S.A., 3
December 2022.

[30] C. Krause, I. Pang and D. Shih, CaloFlow for CaloChallenge Dataset 1, arXiv:2210.14245.

[31] S. Diefenbacher et al., L2LFlows: generating high-fidelity 3D calorimeter images, 2023 JINST 18 P10017
[arXiv:2302.11594].

[32] A. Xu, S. Han, X. Ju and H. Wang, Generative machine learning for detector response modeling with a
conditional normalizing flow, 2024 JINST 19 P02003 [arXiv:2303.10148].

[33] M.R. Buckley, C. Krause, I. Pang and D. Shih, Inductive simulation of calorimeter showers with
normalizing flows, Phys. Rev. D 109 (2024) 033006 [arXiv:2305.11934].

[34] J. Sohl-Dickstein, E.A. Weiss, N. Maheswaranathan and S. Ganguli, Deep Unsupervised Learning using
Nonequilibrium Thermodynamics, arXiv:1503.03585.

– 19 –

https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1007/s41781-018-0015-y
https://arxiv.org/abs/1805.00850
http://cds.cern.ch/record/2630433
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1007/s41781-021-00079-7
https://arxiv.org/abs/2109.02551
https://arxiv.org/abs/2303.08046
https://doi.org/10.1007/s41781-021-00056-0
https://arxiv.org/abs/2005.05334
https://doi.org/10.1051/epjconf/202125103003
https://arxiv.org/abs/2102.12491
https://doi.org/10.1088/2632-2153/ac7848
https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2210.06204
https://arxiv.org/abs/2211.15380
https://doi.org/10.1088/2632-2153/acefa9
https://doi.org/10.1088/2632-2153/acefa9
https://arxiv.org/abs/2303.18150
https://doi.org/10.1007/s41781-021-00060-4
https://doi.org/10.1007/s41781-021-00060-4
https://doi.org/10.1103/PhysRevD.107.113003
https://arxiv.org/abs/2106.05285
https://doi.org/10.1103/PhysRevD.107.113004
https://arxiv.org/abs/2110.11377
https://arxiv.org/abs/2210.14245
https://doi.org/10.1088/1748-0221/18/10/P10017
https://arxiv.org/abs/2302.11594
https://doi.org/10.1088/1748-0221/19/02/P02003
https://arxiv.org/abs/2303.10148
https://doi.org/10.1103/PhysRevD.109.033006
https://arxiv.org/abs/2305.11934
https://arxiv.org/abs/1503.03585


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
4
0
2
0

[35] Y. Song and S. Ermon, Generative Modeling by Estimating Gradients of the Data Distribution,
arXiv:1907.05600.

[36] Y. Song and S. Ermon, Improved Techniques for Training Score-Based Generative Models,
arXiv:2006.09011.

[37] J. Ho, A. Jain and P. Abbeel, Denoising Diffusion Probabilistic Models, arXiv:2006.11239.

[38] Y. Song et al., Score-Based Generative Modeling through Stochastic Differential Equations,
arXiv:2011.13456.

[39] V. Mikuni and B. Nachman, Score-based generative models for calorimeter shower simulation, Phys. Rev.
D 106 (2022) 092009 [arXiv:2206.11898].

[40] E. Buhmann et al., CaloClouds: fast geometry-independent highly-granular calorimeter simulation,
2023 JINST 18 P11025 [arXiv:2305.04847].

[41] F.T. Acosta et al., Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation,
arXiv:2307.04780.

[42] V. Mikuni and B. Nachman, CaloScore v2: single-shot calorimeter shower simulation with diffusion
models, 2024 JINST 19 P02001 [arXiv:2308.03847].

[43] O. Amram and K. Pedro, Denoising diffusion models with geometry adaptation for high fidelity
calorimeter simulation, Phys. Rev. D 108 (2023) 072014 [arXiv:2308.03876].

[44] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075
[arXiv:1907.03764].

[45] B. Hashemi et al., LHC analysis-specific datasets with Generative Adversarial Networks,
arXiv:1901.05282.

[46] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DĳetGAN: A
Generative-Adversarial Network Approach for the Simulation of QCD Dĳet Events at the LHC, JHEP 08
(2019) 110 [arXiv:1903.02433].

[47] J. Arjona Martínez et al., Particle Generative Adversarial Networks for full-event simulation at the LHC
and their application to pileup description, J. Phys. Conf. Ser. 1525 (2020) 012081
[arXiv:1912.02748].

[48] Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-Augmented and Transformed
Generative Adversarial Network (FAT-GAN), arXiv:2001.11103 [DOI:10.24963/ijcai.2021/293].

[49] S. Otten et al., Event Generation and Statistical Sampling for Physics with Deep Generative Models and a
Density Information Buffer, Nature Commun. 12 (2021) 2985 [arXiv:1901.00875].

[50] A. Butter et al., Generative networks for precision enthusiasts, SciPost Phys. 14 (2023) 078
[arXiv:2110.13632].

[51] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware
Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1 (2017) 4
[arXiv:1701.05927].

[52] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised Machine
Learning in Particle Physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720].

[53] E. Bothmann and L. Debbio, Reweighting a parton shower using a neural network: the final-state case,
JHEP 01 (2019) 033 [arXiv:1808.07802].

[54] K. Dohi, Variational Autoencoders for Jet Simulation, arXiv:2009.04842.

– 20 –

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2011.13456
https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1103/PhysRevD.106.092009
https://arxiv.org/abs/2206.11898
https://doi.org/10.1088/1748-0221/18/11/P11025
https://arxiv.org/abs/2305.04847
https://arxiv.org/abs/2307.04780
https://doi.org/10.1088/1748-0221/19/02/P02001
https://arxiv.org/abs/2308.03847
https://doi.org/10.1103/PhysRevD.108.072014
https://arxiv.org/abs/2308.03876
https://doi.org/10.21468/SciPostPhys.7.6.075
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/1901.05282
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.1007/JHEP08(2019)110
https://arxiv.org/abs/1903.02433
https://doi.org/10.1088/1742-6596/1525/1/012081
https://arxiv.org/abs/1912.02748
https://arxiv.org/abs/2001.11103
https://doi.org/10.24963/ijcai.2021/293
https://doi.org/10.1038/s41467-021-22616-z
https://arxiv.org/abs/1901.00875
https://doi.org/10.21468/SciPostPhys.14.4.078
https://arxiv.org/abs/2110.13632
https://doi.org/10.1007/s41781-017-0004-6
https://arxiv.org/abs/1701.05927
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1804.09720
https://doi.org/10.1007/JHEP01(2019)033
https://arxiv.org/abs/1808.07802
https://arxiv.org/abs/2009.04842


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
4
0
2
0

[55] R. Kansal et al., Particle Cloud Generation with Message Passing Generative Adversarial Networks, in the
proceedings of the 35th Conference on Neural Information Processing Systems, Online Conference,
Canada, 6–14 December 2021 [arXiv:2106.11535].

[56] B. Käch et al., JetFlow: Generating Jets with Conditioned and Mass Constrained Normalising Flows,
arXiv:2211.13630.

[57] B. Käch, D. Krücker and I. Melzer-Pellmann, Point Cloud Generation using Transformer Encoders and
Normalising Flows, arXiv:2211.13623.

[58] R. Kansal et al., Evaluating generative models in high energy physics, Phys. Rev. D 107 (2023) 076017
[arXiv:2211.10295].

[59] E. Buhmann, G. Kasieczka and J. Thaler, EPiC-GAN: Equivariant point cloud generation for particle jets,
SciPost Phys. 15 (2023) 130 [arXiv:2301.08128].

[60] M. Leigh et al., PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics, SciPost Phys.
16 (2024) 018 [arXiv:2303.05376].

[61] B. Käch and I. Melzer-Pellmann, Attention to Mean-Fields for Particle Cloud Generation,
arXiv:2305.15254.

[62] A. Butter et al., Jet Diffusion versus JetGPT – Modern Networks for the LHC, arXiv:2305.10475.

[63] M. Leigh et al., Faster diffusion model with improved quality for particle cloud generation, Phys. Rev. D
109 (2024) 012010 [arXiv:2307.06836].

[64] CMS collaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, Tech. Rep.
CERN-LHCC-2017-023 CERN, Geneva, Switzerland (2017) [DOI:10.17181/CERN.IV8M.1JY2].

[65] J. Liu et al., Generalizing to new geometries with Geometry-Aware Autoregressive Models (GAAMs) for
fast calorimeter simulation, 2023 JINST 18 P11003 [arXiv:2305.11531].

[66] V. Mikuni, B. Nachman and M. Pettee, Fast point cloud generation with diffusion models in high energy
physics, Phys. Rev. D 108 (2023) 036025 [arXiv:2304.01266].

[67] Q. Zhang and Y. Chen, Fast Sampling of Diffusion Models with Exponential Integrator,
arXiv:2204.13902.

[68] T. Karras, M. Aittala, T. Aila and S. Laine, Elucidating the Design Space of Diffusion-Based Generative
Models, arXiv:2206.00364.

[69] C. Lu et al., DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10
Steps, arXiv:2206.00927.

[70] C. Lu et al., DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models,
arXiv:2211.01095.

[71] E. Luhman and T. Luhman, Knowledge Distillation in Iterative Generative Models for Improved Sampling
Speed, arXiv:2101.02388.

[72] T. Salimans and J. Ho, Progressive Distillation for Fast Sampling of Diffusion Models,
arXiv:2202.00512.

[73] X. Liu, C. Gong and Q. Liu, Flow Straight and Fast: Learning to Generate and Transfer Data with
Rectified Flow, arXiv:2209.03003.

[74] H. Zheng et al., Fast Sampling of Diffusion Models via Operator Learning, arXiv:2211.13449.

[75] D. Berthelot et al., TRACT: Denoising Diffusion Models with Transitive Closure Time-Distillation,
arXiv:2303.04248.

– 21 –

https://arxiv.org/abs/2106.11535
https://arxiv.org/abs/2211.13630
https://arxiv.org/abs/2211.13623
https://doi.org/10.1103/PhysRevD.107.076017
https://arxiv.org/abs/2211.10295
https://doi.org/10.21468/SciPostPhys.15.4.130
https://arxiv.org/abs/2301.08128
https://doi.org/10.21468/SciPostPhys.16.1.018
https://doi.org/10.21468/SciPostPhys.16.1.018
https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2305.15254
https://arxiv.org/abs/2305.10475
https://doi.org/10.1103/PhysRevD.109.012010
https://doi.org/10.1103/PhysRevD.109.012010
https://arxiv.org/abs/2307.06836
https://doi.org/10.17181/CERN.IV8M.1JY2
https://doi.org/10.1088/1748-0221/18/11/P11003
https://arxiv.org/abs/2305.11531
https://doi.org/10.1103/PhysRevD.108.036025
https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2204.13902
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2101.02388
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2211.13449
https://arxiv.org/abs/2303.04248


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
4
0
2
0

[76] Y. Song, P. Dhariwal, M. Chen and I. Sutskever, Consistency Models, arXiv:2303.01469.

[77] ILD Concept Group, International Large Detector: Interim Design Report, arXiv:2003.01116.

[78] iLCSoft Group, iLCSoft Project Page, https://ilcsoft.desy.de/portal.

[79] M. Frank, F. Gaede, C. Grefe and P. Mato, DD4hep: A Detector Description Toolkit for High Energy
Physics Experiments, J. Phys. Conf. Ser. 513 (2014) 022010.

[80] D.P. Kingma et al., Improving Variational Inference with Inverse Autoregressive Flow,
arXiv:1606.04934.

[81] D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114.

[82] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library,
arXiv:1912.01703.

[83] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using Real NVP, arXiv:1605.08803.

[84] C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, Neural Spline Flows, arXiv:1906.04032.

[85] E. Bingham et al., Pyro: Deep Universal Probabilistic Programming, J. Mach. Learn. Res. 20 (2019) 28
[arXiv:1810.09538].

[86] S. Luo and W. Hu, Diffusion Probabilistic Models for 3D Point Cloud Generation, arXiv:2103.01458.

[87] J. Song, C. Meng and S. Ermon, Denoising Diffusion Implicit Models, arXiv:2010.02502.

[88] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, in the proceedings of the 3rd

International Conference on Learning Representations, San Diego, CA, U.S.A., 7–9 May 2015
[arXiv:1412.6980].

[89] A.L. Maas, A.Y. Hannun, A.Y. Ng et al., Rectifier nonlinearities improve neural network ac6–21 June
oustic models, in the proceedings of the 30th International Conference on Machine Learning, Atlanta, GA,
U.S.A., 2013.

[90] R. Das et al., How to Understand Limitations of Generative Networks, SciPost Phys. 16 (2024) 031
[arXiv:2305.16774].

[91] T. Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness,
arXiv:2205.14135.

[92] A. Vaswani et al., Attention Is All You Need, in the proceedings of the 31st International Conference on
Neural Information Processing Systems, Long Beach, CA, U.S.A., 4–9 December 2017
[arXiv:1706.03762].

– 22 –

https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2003.01116
https://ilcsoft.desy.de/portal
https://doi.org/10.1088/1742-6596/513/2/022010
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/1810.09538
https://arxiv.org/abs/2103.01458
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/1412.6980
https://doi.org/10.21468/SciPostPhys.16.1.031
https://arxiv.org/abs/2305.16774
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1706.03762

	Introduction
	Data samples
	Generative model
	Diffusion model
	Consistency model
	Training and Sampling

	Results
	Physics performance
	Evaluation Scores
	Classifier scores
	Timing

	Conclusions
	Radial and longitudinal energy observables

