Book/Dissertation / PhD Thesis PUBDB-2022-03578

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Time-Resolved Phase-Space Characterisation of Plasma-Wakefield-Accelerated Electrons at FLASHForward

 ;  ;

2022
Verlag Deutsches Elektronen-Synchrotron DESY Hamburg

Hamburg : Verlag Deutsches Elektronen-Synchrotron DESY, DESY-THESIS 262 pp. () [10.3204/PUBDB-2022-03578] = Dissertation, Universität Hamburg, 2022  GO

This record in other databases:

Please use a persistent id in citations: doi:

Report No.: DESY-THESIS-2022-014

Abstract: A plasma can sustain electric fields orders of magnitude larger than those attainable with the conventional radio-frequency (RF) technology typically used in particle accelerators, which are limited to ∼ 100 MV/m due to electrical breakdowns occurring at the metallic boundary of the accelerating structures. In a particle-beam-driven plasma-wakefield accelerator (PWFA), a charge-density wake sustaining field gradients in excess of GV/m is driven by the passage of a relativistic high-intensity particle bunch through a plasma. By harnessing the gradientsof the wake, particles trailing behind the wakefield-driving bunch can be accelerated to GeV energies over meter distances, thus enabling a drastic reduction of the size of acceleratorcomponenents and, consequently, potentially reducing the costs of future accelerator facilities. Despite this promise, however, for PWFA to be a viable technology, the quality of theaccelerated bunches must match that achieved by RF-based state-of-the-art FEL linacs and particle colliders. Even though theoretical predictions suggest that PWFA schemes are capable of producing electric-field profiles with properties sufficient to preserve the longitudinal-phase-space structure of the accelerating beam, direct experimental demonstration has not yet been achieved.In the work presented in this thesis the diagnostic capabilities of a novel X-band transverse deflection structure (TDS)—featuring femtosecond resolution and a variablepolarisation of the streaking field—are exploited to investigate two mechanisms enabling the preservation of the energy spread of electron beams accelerated in a nonlinear plasma wake: optimal beam loading to preserve the correlated energy spread and a fully evacuated ion column to preserve the uncorrelated energy spread. By directly observing the longitudinal phase space of 1-GeV bunches accelerated 44 MeV in a nonlinear plasma wake, experiments performed at the FLASHForward facility (DESY, Hamburg) demonstrate that the longitudinal accelerating gradients are transversely homogeneous to within 0.8 % (1.5 %) at an interval of confidence of 68 % (95 %) and show variable amounts of beam loading depending on the exact shape of the current profile of the driver-trailing-bunch pair. The results presented in this work experimentally demonstrate the predicted suitability of PWFA for future applications requiring the preservation of high longitudinal beam quality. Furthermore, a reconstruction of the beam-plasma interaction in a particle-in-cell code has been accomplished, which illustrates the extreme sensitivity of the PWFA acceleration process to the phase-space distribution of the incoming beams. These achievements suggest that, while PWFA is capable of producing the desired field geometries, an improved control over the production of driver-trailing-bunch pairs will be required to demonstrate stable and quality-preserving acceleration at higher energy gains.


Note: Dissertation, Universität Hamburg, 2022

Contributing Institute(s):
  1. FTX Fachgruppe AST (HH_FH_FTX_AS)
  2. Beam-Driven Plasma Accelerators (MPA2)
Research Program(s):
  1. 621 - Accelerator Research and Development (POF4-621) (POF4-621)
  2. PHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500) (2015_IFV-VH-GS-500)
Experiment(s):
  1. FLASHForward

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > >FTX > HH_FH_FTX_AS
Private Collections > >DESY > >M > MPA2
Document types > Theses > Ph.D. Theses
Document types > Books > Books
Public records
Publications database
OpenAccess

 Record created 2022-07-11, last modified 2023-11-07


OpenAccess:
Dissertation_PauGonzalez_6616473 - Download fulltext PDF
desy-thesis-22-014.title - Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)