Journal Article PUBDB-2021-03298

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Juvenile ecology drives adult morphology in two insect orders

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Royal Soc. of London London

Proceedings of the Royal Society of London / B 288(1953), 20210616 () [10.1098/rspb.2021.0616]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Most animals undergo ecological niche shifts between distinct life phases, but such shifts can result in adaptive conflicts of phenotypic traits. Metamorphosis can reduce these conflicts by breaking up trait correlations, allowing each life phase to independently adapt to its ecological niche. This process is called adaptive decoupling. It is, however, yet unknown to what extent adaptive decoupling is realized on a macroevolutionary scale in hemimetabolous insects and if the degree of adaptive decoupling is correlated with the strength of ontogenetic niche shifts. It is also unclear whether the degree of adaptive decoupling is correlated with phenotypic disparity. Here, we quantify nymphal and adult trait correlations in 219 species across the whole phylogeny of earwigs and stoneflies to test whether juvenile and adult traits are decoupled from each other. We demonstrate that adult head morphology is largely driven by nymphal ecology, and that adult head shape disparity has increased with stronger ontogenetic niche shifts in some stonefly lineages. Our findings implicate that the hemimetabolan metamorphosis in earwigs and stoneflies does not allow for high degrees of adaptive decoupling, and that high phenotypic disparity can even be realized when the evolution of distinct life phases is coupled.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. Helmholtz-Zentrum Hereon (Hereon)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P05 (PETRA III)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Private Collections > >Hereon > Hereon
Public records
Publications database
OpenAccess

 Record created 2021-08-10, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)